Evidence for the stochastic integration of gene trap vectors into the mouse germline.

Nucleic Acids Res

Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Am Fassberg, D-37077 Göttingen, Germany.

Published: April 1997

A large scale insertional mutagenesis experiment was performed in embryonic stem (ES) cells by introducing two types of gene trap vectors into the genome. These cell lines carrying mutations were introduced into the mouse germline. In order to assess the feasibility of a large scale cloning of the targeted genes from these lines, we have isolated and characterized 55 trapped exons from the corresponding ES cells. Analysis of the data has revealed that vectors containing or lacking an internal ribosome entry site (IRES) can integrate into the ES cell genome stochastically. The targeted genes comprise 30% known genes, 20% expressed sequence tags (ESTs) and 50% novel or unknown genes. The known genes belong to several major classes and represent complete or partial knockouts. Using currently available methods or modifications of them, it should be feasible to do a large scale cloning of trapped genes from the mouse ES cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146629PMC
http://dx.doi.org/10.1093/nar/25.8.1531DOI Listing

Publication Analysis

Top Keywords

large scale
12
gene trap
8
trap vectors
8
mouse germline
8
cell lines
8
scale cloning
8
targeted genes
8
genes
6
evidence stochastic
4
stochastic integration
4

Similar Publications

Background: The significance of the controlling nutritional status (CONUT) score in predicting the prognostic outcomes of diffuse large B-cell lymphoma (DLBCL) has been widely explored, with conflicting results. Therefore, the present meta-analysis aimed to identify the prognostic significance of the CONUT in DLBCL by aggregating current evidence.

Methods: The Web of Science, PubMed, Embase, CNKI and Cochrane Library databases were searched for articles from inception to October 15, 2024.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a primary cause of chronic liver disease, with potential progression to cirrhosis and hepatocellular carcinoma (HCC). Although systemic inflammatory biomarkers are associated with liver diseases, their specific role in MASLD remains unclear. This study examines the association between systemic inflammatory biomarkers and MASLD.

View Article and Find Full Text PDF

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Background: The diagnosis of depression or anxiety treated by SSRIs has become relatively common in women of childbearing age. However, the impact of gestational SSRI treatment on newborn thyroid function is lacking. We explored the impact of gestational SSRI treatment on newborn thyroid function as measured by the National Newborn Screening (NBS) Program and identified contributory factors.

View Article and Find Full Text PDF

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!