Ras proteins are small GTP-binding proteins which are critical for cell signaling and proliferation. Four Ras isoforms exist: Ha-Ras, N-Ras, Ki-Ras4A, and Ki-Ras4B. The carboxyl termini of all four isoforms are post-translationally modified by farnesyl protein transferase (FPT). Prenylation is required for oncogenic Ras to transform cells. Recently, it was reported that Ki-Ras4B is also an in vitro substrate for the related enzyme geranylgeranyl protein transferase-1 (GGPT-1) (James, G. L., Goldstein, J. L., and Brown, M. S. (1995) J. Biol. Chem. 270, 6221-6226). In the current studies, we compared the four isoforms of Ras as substrates for FPT and GGPT-1. The affinity of FPT for Ki-Ras4B (Km = 30 nM) is 10-20-fold higher than that for the other Ras isoforms. Consistent with this, when the different Ras isoforms are tested at equimolar concentrations, it requires 10-20-fold higher levels of CAAX-competitive compounds to inhibit Ki-Ras4B farnesylation. Additionally, we found that, as reported for Ki-Ras4B, N-Ras and Ki-Ras4A are also in vitro substrates for GGPT-1. Of the Ras isoforms, N-Ras is the highest affinity substrate for GGPT-1 and is similar in affinity to a standard GGPT-1 substrate terminating in leucine. However, the catalytic efficiencies of these geranylgeranylation reactions are between 15- and 140-fold lower than the corresponding farnesylation reactions, largely reflecting differences in affinity. Carboxyl-terminal peptides account for many of the properties of the Ras proteins. One interesting exception is that, unlike the full-length N-Ras protein, a carboxyl-terminal N-Ras peptide is not a GGPT-1 substrate, raising the possibility that upstream sequences in this protein may play a role in its recognition by GGPT-1. Studies with various carboxyl-terminal peptides from Ki-Ras4B suggest that both the carboxyl-terminal methionine and the upstream polylysine region are important determinants for geranylgeranylation. Furthermore, it was found that full-length Ki-Ras4B, but not other Ras isoforms, can be geranylgeranylated in vitro by FPT. These findings suggest that the different distribution of Ras isoforms and the ability of cells to alternatively process these proteins may explain in part the resistance of some cell lines to FPT inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.15.10232DOI Listing

Publication Analysis

Top Keywords

ras isoforms
24
n-ras ki-ras4a
12
protein transferase
12
ras
10
ha-ras n-ras
8
ki-ras4b
8
ki-ras4a ki-ras4b
8
ki-ras4b vitro
8
vitro substrates
8
farnesyl protein
8

Similar Publications

Celery () can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis.

View Article and Find Full Text PDF

Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants.

Protein Sci

February 2025

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA.

Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1) allosterically impact NF1 GAP to promote these distinct pathologies is unclear.

View Article and Find Full Text PDF

The effect of different feeding habits on gut morphology and digestive function has been intensively studied during the last decades but sympatric closely related fishes are relatively rare objects of such studies. In the present study, we have identified both morphological and physiological changes in the digestive system of a sympatric pair of whitefish represented by "normal" Coregonus lavaretus pidschian (benthivorous) and "dwarf" C. l.

View Article and Find Full Text PDF

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation.

Int J Biol Macromol

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!