The subunit composition of angiotensin AT1 receptor-activated G protein was identified by using antisense oligonucleotide injection into the nucleus of rat portal vein myocytes. In these cells, we have previously shown that increases in the cytoplasmic calcium concentration ([Ca2+]i) induced by activation of angiotensin AT1 receptors were dependent on extracellular Ca2+ entry by L-type Ca2+ channels and subsequent Ca2+-induced Ca2+ release from the intracellular stores. The angiotensin AT1 receptor-activated increases in [Ca2+]i were selectively inhibited by injection of antisense oligonucleotides directed against the mRNAs coding for the alpha13, beta1, and gamma3 subunits. A correlating reduction in Galpha13, Gbeta1, and Ggamma3 protein expression was confirmed by immunocytochemistry. In addition, anti-alpha13 antibody and synthetic peptide corresponding to the carboxyl terminus of the Galpha13 subunit inhibited, in a concentration-dependent manner, the angiotensin AT1 receptor-mediated Ca2+ response. Reverse transcription-polymerase chain reaction analysis showed that only the angiotensin AT1A receptor was expressed in rat portal vein smooth muscle. Furthermore, injection of anti-AT1A oligonucleotides selectively inhibited the angiotensin II-induced increase in [Ca2+]i. We conclude that the receptor-activated signal leading to increases in [Ca2+]i is transduced by the heterotrimeric G13 protein composed of alpha13/beta1/gamma3 subunits and that the carboxyl terminus of the Galpha13 subunit interacts with the angiotensin AT1A receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.15.10095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!