The avirulence gene Avr4 conditions avirulence of the biotrophic fungus Cladosporium fulvum on tomato genotypes carrying resistance gene Cf-4 (MM-Cf4). Strains of the fungus that circumvent Cf-4-specific resistance show various single point mutations in the coding region of the Avr4 gene. Similar to expression of the Avr4 gene, expression of the various virulent avr4 alleles is specifically induced during pathogenesis. Polyclonal antibodies raised against the AVR4 elicitor, however, did not detect AVR4 isoforms in MM-Cf4 plants infected by the different virulent strains, indicating that these isoforms are unstable. To analyze whether the AVR4 isoforms still possess specific elicitor activity, the avr4 alleles were expressed in MM-Cf4 plants by using the potato virus X (PVX)-based expression system. Inoculation with PVX::Avr4 resulted in the development of spreading lesions, eventually leading to plant death, whereas the various PVX::avr4 derivatives induced symptoms ranging from severe necrosis to no lesions at all. We conclude that instability of the AVR4 isoforms that are produced by virulent strains is a crucial factor in circumvention of Cf-4-mediated resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156924 | PMC |
http://dx.doi.org/10.1105/tpc.9.3.367 | DOI Listing |
New Phytol
August 2014
Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
Hydrolases such as subtilases, vacuolar processing enzymes (VPEs) and the proteasome play important roles during plant programmed cell death (PCD). We investigated hydrolase activities during PCD using activity-based protein profiling (ABPP), which displays the active proteome using probes that react covalently with the active site of proteins. We employed tomato (Solanum lycopersicum) seedlings undergoing synchronized hypersensitive cell death by co-expressing the avirulence protein Avr4 from Cladosporium fulvum and the tomato resistance protein Cf-4.
View Article and Find Full Text PDFPlant J
April 2010
Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family.
View Article and Find Full Text PDFJ Proteome Res
March 2009
Laboratory of Phytopathology, Wageningen University, 6709 PD Wageningen, The Netherlands.
An important mechanism by which plants defend themselves against pathogens is the rapid execution of a hypersensitive response (HR). Tomato plants containing the Cf-4 resistance gene mount an HR that relies on the activation of phosphorylation cascades, when challenged with the Avr4 elicitor secreted by the pathogenic fungus Cladosporium fulvum. Phosphopeptides were isolated from tomato seedlings expressing both Cf-4 and Avr4 using titanium dioxide columns and LC-MS/MS analysis led to the identification of 50 phosphoproteins, most of which have not been described in tomato before.
View Article and Find Full Text PDFMol Microbiol
October 2004
Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709PD Wageningen, the Netherlands.
Introgression of resistance trait Cf-4 from wild tomato species into tomato cultivar MoneyMaker (MM-Cf0) has resulted in the near-isogenic line MM-Cf4 that confers resistance to the fungal tomato pathogen Cladosporium fulvum. At the Cf-4 locus, five homologues of Cladosporium resistance gene Cf-9 (Hcr9s) are present. While Hcr9-4D represents the functional Cf-4 resistance gene matching Avr4, Hcr9-4E confers resistance towards C.
View Article and Find Full Text PDFJ Biol Chem
July 2003
Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine hydrochloride, subsequent cyanylation, and base-catalyzed chain cleavage. The resulting peptide fragments were analyzed by mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!