The present experiment was designed to elucidate whether chronic dietary treatment with nimodipine (3 months, 1000 ppm) enhances water maze spatial navigation, passive avoidance behavior and locomotor activity, and whether such a treatment with nimodipine would interact with the therapeutic effect of acute metrifonate treatment. In young medial septum-lesioned rats, nimodipine had no effect by its own on cognitive or motor behavior, and did not enhance the water maze and passive avoidance behavior improving action of metrifonate (3 and 10 mg/kg. p.o.). Nimodipine treatment of aged rats did not markedly affect the deficit in motor performance. Single and combined nimodipine and metrifonate (3 and 10 mg/kg, p.o.) treatment of aged rats resulted in shorter escape distance values to the hidden water maze escape platform compared to those of control aged rats. The passive avoidance performance of aged rats was more effectively facilitated by a combined nimodipine and metrifonate treatment than by either of the drugs on their own. Following a washout period of 2.5 months the rats that were treated previously with nimodipine no longer performed better than aged controls in the water maze test. Furthermore, after the washout period metrifonate 10 mg/kg was no longer effective in improving the water maze behavior of the now 26-month-old rats irrespective of their chronic pretreatment. Taken together, these findings indicate that chronic nimodipine and acute metrifonate treatment may more effectively stimulate cognitive functioning than either of the treatments on their own.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-2999(96)00976-4DOI Listing

Publication Analysis

Top Keywords

water maze
20
metrifonate treatment
16
aged rats
16
acute metrifonate
12
avoidance behavior
12
passive avoidance
12
metrifonate mg/kg
12
nimodipine
9
chronic nimodipine
8
nimodipine acute
8

Similar Publications

Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have been gaining significant attention due to their potential application in medicine. Here, we investigated the effect of zeolite imidazole framework-8 (ZIF-8) on neuro-behavioral parameters, histopathology, inflammation, and oxidative stress levels of rats' brain samples. Forty-eight male Wistar rats were injected by four injections of saline or ZIF-8 at different doses of 5, 10, or 20 mg/kg via the caudal vein.

View Article and Find Full Text PDF

[Effect of moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway].

Zhongguo Zhen Jiu

January 2025

Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Provincial Hospital of TCM, Nanjing 210029, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province.

Objective: To observe the effects of (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).

Methods: A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group.

View Article and Find Full Text PDF

Sevoflurane (Sev) is a widely applied anesthetic in clinical practice; however, it could induce neurotoxicity and lead to postoperative cognitive dysfunction (POCD). This study aimed to investigate the role and underlying mechanism of circHOMER1 in Sev-induced neurotoxicity and POCD. Sev treated mouse hippocampal neuronal HT22 cells and SD rats.

View Article and Find Full Text PDF

Background: The tachykinin substance P (SP) facilitates learning and memory processes after its central administration. Activation of its different receptive sites, neurokinin-1 receptors (NK1Rs), as well as NK2Rs and NK3Rs was shown to influence learning and memory. The basal ganglia have been confirmed to play an important role in the control of memory processes and spatial learning mechanisms, and as part of the basal ganglia, the globus pallidus (GP) may also be involved in this regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!