In vitro modulation of the P450 activities of hamster and human lung slices.

Cell Biol Toxicol

K. U. Leuven, Laboratorium voor Pneumologie, Belgium.

Published: March 1997

The respiratory tract is a portal of entry for many environmental chemicals. The respiratory tract plays an important role in the detoxification or metabolic activation of these chemicals, e.g., via cytochrome P450 enzymes. Alterations in the capabilities of these enzymes to metabolize inhaled compounds can, therefore, affect the toxicity of the chemicals. The pulmonary cytochrome P450 activity has been studied in many species, but relatively little is known about this activity in the human lung tissue. In this limited study, we have investigated the possibility of modulating in vitro the P450 activity in lung slices from hamsters and humans. The alkoxyresorufin-O-dealkylase activity was measured in the S9 fraction of lung slices incubated for 24 h with 10(6) mol/L 20-methylcholanthrene (3MC) or beta-naphthoflavone (beta N). The ethoxyresorufin-O-deethylase (EROD) activity was increased by 3MC and beta N in lung slices of both species. The benzyloxyresorufin-O-deethylase (BROD) activity was decreased after incubation with 3MC but increased with beta N. These data show that in vitro modulation in lung slices is feasible, although technical improvement is still needed, particularly in relation to the viability of the slices.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1007362329736DOI Listing

Publication Analysis

Top Keywords

lung slices
20
vitro modulation
8
human lung
8
respiratory tract
8
cytochrome p450
8
p450 activity
8
lung
6
slices
6
activity
6
p450
4

Similar Publications

There is increased interest in developing non-animal test systems for inhalation exposure safety assessments. However, defined methodologies are absent for predicting local respiratory effects from inhalation exposure to irritants. The current study introduces a concept for applying in vitro and in silico methods for inhalation exposure safety assessment.

View Article and Find Full Text PDF

Asthma is a major non-communicable disease whose pathogenesis is still not fully elucidated. One of the asthma research models is precision-cut lung slices (PCLSs), and among the therapeutic options, miRNA molecules are of great interest. The aim of our study was to investigate whether inhibition of miR-223-3p and miR328a-3p affects the inflammatory response in PCLSs derived from a rat with HDM-induced allergic inflammation and a control rat.

View Article and Find Full Text PDF

Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.

View Article and Find Full Text PDF

The purpose of this study was to measure T and T relaxation times of NAD proton resonances in the downfield H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T relaxation times, and saturation recovery data were acquired to measure T relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!