Hypertension and tachycardia are well known features of acute porphyria and have been shown to be related to increased circulating catecholamines. The mechanism by which circulating catecholamines are increased was studied using the isolated perfused rat heart and human platelets as a model of adrenergic neuronal function. It was found that neither delta-aminolevulinate (ALA) nor porphobilinogen (PBG) blocked uptake or caused release in the isolated perfused rat heart. Platelets from six patients with acute prophyria, three in remission and three latent, with matching normal controls were studied with regard to their uptake of [(3)H]norepinephrine in the presence of ALA or PBG. It was found that ALA and PBG significantly reduced uptake and accumulation of [(3)H]-norepinephrine in patients with acute porphyria; however, no similar reduction in uptake and accumulation was observed in the platelets of normal controls. Therefore, it appears that there is a latent defect in the catecholamine uptake and (or) accumulation of platelets of patients with acute prophyria which only manifests itself in the presence of ALA or PBG. If platelet uptake serves as a model of adrenergic neuron uptake, this suggests that elevated circulating catecholamine levels during acute attacks of acute porphyria are caused at least partially by blockade of re-uptake into the sympathetic neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372467 | PMC |
http://dx.doi.org/10.1172/JCI108866 | DOI Listing |
Reprod Toxicol
January 2025
Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Nanoplastics (NPs) and microplastics (MPs) have become a global concern in recent years. Most current research on the impact of plastics on obstetrics has focused on their accumulation in specific tissues in animal models and the disease-causing potential of MPs. However, there is a relative lack of research on the cellular changes caused by the accumulation of MPs.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
December 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China.
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!