The human osteosarcoma 143.98.2 cell line was found to express high levels of prostaglandin synthase-2 (PGHS-2) without detectable levels of prostaglandin synthase-1 (PGHS-1) as measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis. Maximal levels of PGHS-2 induction were attained when the cells were grown beyond confluence. The osteosarcoma cells also secrete IL-1 alpha, IL-1 beta and TNF alpha in the culture medium. PGHS-2 expression was inducible by the exogenous addition of these cytokines as well as conditioned media from auto-induced cultures and inhibitable by treatment with dexamethasone. In contrast, undifferentiated U937 cells selectively express PGHS-1 as analyzed by RT-PCR and Western blotting. The effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the cellular PGE2 production mediated by each isoform of human PGHS were determined using osteosarcoma and undifferentiated U937 cells. When cells were preincubated with inhibitors to allow time-dependent inhibition prior to arachidonic acid stimulation, NS-398, CGP 28238, L-745,337, SC-58125 all behaved as potent (IC50 = 1-30 nM) and selective inhibitors of PGHS-2, in contrast to indomethacin, flurbiprofen or diclofenac which are potent inhibitors of enzymes. DuP-697 and sulindac sulfide were also potent inhibitors of PGHS-2 but both compounds inhibited cellular PGHS-1 activity at higher doses (IC50 = 0.2-0.4 microM). Time-dependent inhibition of PGE2 production in osteosarcoma cells was observed for indomethacin, diclofenac and etodolac. The synthesis of PGE2 by U937 cells was strongly dependent on exogenous arachidonic acid (100-fold stimulation) whereas confluent osteosarcoma cells also produced PGE2 without exogenous stimulus (7-fold stimulation by arachidonic acid). Osteosarcoma cells grown beyond confluence released more PGE2 from endogenous substrate than arachidonic acid stimulated undifferentiated U937 cells. These results indicate that osteosarcoma cells selectively express PGHS-2 with an autocrine regulation and effective utilization of endogenous arachidonic acid for PGE2 synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s000110050063 | DOI Listing |
Eur J Dent
March 2025
Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, São Paulo, Brazil.
Objective: The purpose of the study was to investigate the cytotoxicity, biocompatibility, and osteogenic effect of EndoSequence BCSealer HiFlow (BCH) and Bio-C Sealer (BCS) in osteosarcoma cells SAOS-2 compared with AH Plus Jet.
Materials And Methods: For cytotoxicity analysis, the [3-(4,5-dimethyl-thiazole)-2,5-diphenyltetrazolium bromide-MTT; Sigma/Aldrich] method was used after 24, 48, and 72 hours. For cellular bioactivity, alkaline phosphatase enzyme (ALP) was evaluated after 7 and 14 days.
Nanomaterials (Basel)
February 2025
CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France.
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma cells at the proximal third of the tibia.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China.
Background: Osteosarcoma (OS) is the prevalent primary bone cancer, with a high proclivity for local invasion and metastasis. Previous studies have indicated that telomeres are closely related to prognosis of cancer, but the significance of telomere-related features in OS remains uncertain. Thus, the goal of this work is to identified telomere-related subtypes based on the telomere-related genes (TRGs).
View Article and Find Full Text PDFJ Control Release
March 2025
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
In situ vaccination (ISV) strategies offer an innovative approach to cancer immunotherapy by utilizing drug combinations directly at tumor sites to elicit personalized immune responses. Tumor cell-derived extracellular vesicles (TEVs) in ISV have great potential but face challenges such as low release rates and immunosuppressive proteins like programmed death ligand 1 (PD-L1) and CD47. This study develops a nanoparticle-based ISV strategy (Combo-NPs@shGNE) that enhances TEV release and modulates cargo composition.
View Article and Find Full Text PDFFront Immunol
March 2025
Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Background: Osteosarcoma, an aggressive bone malignancy predominantly affecting children and adolescents, presents significant therapeutic challenges with a 5-year survival rate below 30% in metastatic cases. T-cell exhaustion, characterized by the overexpression of immune checkpoint molecules, contributes to osteosarcoma progression and immune evasion. Although targeting these inhibitory pathways has shown potential in restoring T-cell activity, the molecular regulators of T-cell depletion in osteosarcoma are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!