Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron.

Bioelectromagnetics

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.

Published: June 1997

The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end to a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperatures rises from 0.3 to 2.2 degrees C, respectively. Irradiation at an SAR of 4200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate (69 +/- 22% below control) followed by a gradual increase to a new level that was 68 +/- 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 degrees C) and the rate of temperature rise (0.96 degrees C/s) were equal to those produced by the irradiation (for an SAR of 4,030 W/kg). The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neuron found in warming experiments was a temperature rise of 0.0025 degrees C/s.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1521-186x(1997)18:2<89::aid-bem1>3.0.co;2-0DOI Listing

Publication Analysis

Top Keywords

firing rate
20
temperature rise
12
millimeter waves
8
pacemaker neuron
8
4200 w/kg
8
irradiation sar
8
rate temperature
8
degrees c/s
8
rate
7
firing
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!