Previous studies revealed that matrix vesicles (MV) have an acid-labile nucleationally active core (ALNAC) essential for mineral formation; current studies were aimed at characterizing and reconstituting ALNAC. SDS-PAGE and FTIR analyses revealed the presence of lipids, proteins and amorphous calcium phosphate (ACP) in ALNAC. Extraction with chloroform-methanol reduced, but did not destroy MV calcification; treatment with chloroform-methanol-HCl destroyed all activity. This acidic solvent extracted the annexins, (phosphatidylserine (PS)-dependent Ca(2+)-binding proteins), and dissociated PS-Ca(2+)-Pi complexes present in the MV. Attempts to reconstitute ALNAC, centered on the Ca(2+)-PS-Pi complex. Various pure lipids, electrolytes and proteins were combined to form a synthetic nucleationally active complex (SNAC), analyzing the rate of Ca2+ uptake. Inclusion of phosphatidylethanolamine (PE) or sphingomyelin (SM) with PS, or Mg2+ or Zn2+ with Ca2+, strongly inhibited activity; incorporation of annexin V increased SNAC activity. Thus, approaching from either deconstruction or reconstruction, it appears that ALNAC is composed of ACP complexed with PS and the annexins. Other lipids, proteins and electrolytes modulate its activity. These findings also indicate how ALNAC must be formed in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03008209609029205 | DOI Listing |
PLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFSci Adv
January 2025
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area.
View Article and Find Full Text PDFPLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFBr J Radiol
January 2025
Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
Objectives: To evaluate the value of ultrasound (US) and shear wave velocity (SWV) to assess muscle in postmenopausal women with osteosarcopenia (OSP).
Methods: This study included 145 postmenopausal women, comprising 115 osteopenia/osteoporosis participants without sarcopenia (OP alone) and 30 OSP participants. All received the evaluation of bone mineral density (BMD), appendicular skeletal muscle mass index (ASMI), handgrip strength, calf circumference, 6-meter walking speed, and 5-time chair stand test.
Proc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!