The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.
Download full-text PDF |
Source |
---|
Micromachines (Basel)
January 2025
Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
In modern ICs, sub-threshold voltage management plays a significant role due to its perspective on energy efficiency and speed performance. Level shifters (LSs) play a critical role in signal exchange among multiple voltage domains by ensuring signal integrity and the reliable operation of ICs. In this article, a Pass-Transistor-Enabled Split Input Voltage Level Shifter (PVLS) is designed for area, delay, and power-efficient applications with a wide voltage conversion range.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China.
Steady-state visual evoked potentials (SSVEPs) rely on the photic driving response to encode electroencephalogram (EEG) signals stably and efficiently. However, the user experience of the traditional stimulation with high-contrast flickers urgently needs to be improved. In this study, we introduce a novel paradigm of grid stimulation with weak flickering perception, distinguished by a markedly lower proportion of stimulation area in the overall pattern.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron-phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!