This report describes the initial clinical assessment of (+)-3-[123I]Iodo-MK-801 and its potential to provide single photon emission tomographic (SPET) images in vivo of NMDA receptor activation during cerebral ischaemia. Multiple SPET images were obtained in the 120 min after the administration of 150 MBq of (+)-3-[123I]Iodo-MK-801 to five patients with cerebral ischaemia (due to cerebral haemorrhages) and to five normal volunteers. In normal subjects, (+)-3-[123I]Iodo-MK-801 has a rapid uptake into the brain. The tracer has a high non-specific retention in the central nervous system due to its lipophilicity, which was made evident by the retention of tracer in the cerebellum and white matter (brain areas with few NMDA receptors). In all patients with cerebral haemorrhages, the initial uptake of (+)-3-[123I]Iodo-MK-801 into the ipsilateral hemisphere was markedly reduced, consistent with a reduced level of cerebral blood flow. In two of five patients, relatively increased tracer retention at later time points (60-120 min after tracer administration) could be seen in cortical areas adjacent to the site of the haemorrhage, consistent with activated NMDA receptors. In three of the patients, no relatively enhanced tracer retention could be identified. Using (+)-3-[123I]Iodo-MK-801, it may be possible to image excessive glutamate (NMDA) receptor activation during an ischaemic episode in living human patients. The utility of (+)-3-[123I]Iodo-MK-801 as a SPET ligand for assessing modest alterations in NMDA receptor activity may ultimately be limited by its lipophilicity and consequent high non-specific binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006231-199702000-00010 | DOI Listing |
J Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Pediatrics- Division of Pediatric Oncology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
Introduction: Anti-GD2 immunotherapy has improved outcomes for children with high-risk neuroblastoma (HRNBL). Dinutuximab promotes complement-mediated reaction against disialoganglioside GD2, which is expressed in peripheral nerves and over-expressed in neuroblastoma. Dinutuximab is associated with ≥grade 3 neuropathic pain.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:
Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, Faculty of Health Care and Social Work, Trnava University and University Hospital, 917 02 Trnava, Slovakia.
The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!