Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fractures of the proximal femur represent a significant health concern especially in the elderly. Fatigue damage and microfractures have been implicated in the etiology of hip fractures; however, the extent to which these factors are sufficient to bring about significant reductions in proximal femur strength and stiffness is unknown. This study examined the hypothesis that fatigue loading of the proximal femur results in highly correlated decreases in bone stiffness and strength through the accumulation of bone microdamage. One canine femur from each of 10 pairs was monotonically loaded to failure to determine the ultimate strength. The contralateral femur was then cyclically loaded at 50% of the ultimate load value for either 3600 cycles or until a 40% reduction in stiffness was achieved. This femur was then monotonically loaded to failure. For two additional femur pairs, the fatigued femur was histologically processed to reveal bone microdamage. In support of the hypothesis, the data demonstrated a linear relationship between strength loss and stiffness loss (Adj. R2 = 0.79, p < 0.0004) with significant decreases in residual whole bone strength (p < 0.004) following cyclic loading. In addition, damage (microcracks) in the cortical bone and broken trabeculae were observed in the neck and head region of the femur fatigued until its stiffness was reduced by 40% but not fractured subsequent to cyclic loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9290(96)00159-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!