A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decrease in canine proximal femoral ultimate strength and stiffness due to fatigue damage. | LitMetric

Fractures of the proximal femur represent a significant health concern especially in the elderly. Fatigue damage and microfractures have been implicated in the etiology of hip fractures; however, the extent to which these factors are sufficient to bring about significant reductions in proximal femur strength and stiffness is unknown. This study examined the hypothesis that fatigue loading of the proximal femur results in highly correlated decreases in bone stiffness and strength through the accumulation of bone microdamage. One canine femur from each of 10 pairs was monotonically loaded to failure to determine the ultimate strength. The contralateral femur was then cyclically loaded at 50% of the ultimate load value for either 3600 cycles or until a 40% reduction in stiffness was achieved. This femur was then monotonically loaded to failure. For two additional femur pairs, the fatigued femur was histologically processed to reveal bone microdamage. In support of the hypothesis, the data demonstrated a linear relationship between strength loss and stiffness loss (Adj. R2 = 0.79, p < 0.0004) with significant decreases in residual whole bone strength (p < 0.004) following cyclic loading. In addition, damage (microcracks) in the cortical bone and broken trabeculae were observed in the neck and head region of the femur fatigued until its stiffness was reduced by 40% but not fractured subsequent to cyclic loading.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9290(96)00159-5DOI Listing

Publication Analysis

Top Keywords

proximal femur
12
femur
9
ultimate strength
8
strength stiffness
8
fatigue damage
8
bone microdamage
8
femur pairs
8
monotonically loaded
8
loaded failure
8
cyclic loading
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!