The aromatic retinoid (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1 -propenyl] benzoic acid (TTNPB) is 1000-fold more potent as a teratogen than all trans-retinoic acid (tRA) in several species and in the inhibition of chondrogenesis in the mouse limb bud cell culture. Factors responsible for the potency of TTNPB were investigated including binding to nuclear retinoic acid receptors (RARs and RXRs), cytosolic binding proteins (CRABPs), and metabolic disposition of TTNPB. For competitive binding assays and saturation kinetics, nucleosol or cytosol fractions were obtained from COS-1 cells transfected with cDNAs encoding the appropriate nuclear receptor or binding protein. TTNPB binds to RAR alpha, beta, and gamma with Kds in the nanomolar range; however, these binding affinities are 10-fold less than those of tRA. Although the affinities are high for TTNPB, it is unlikely that the binding affinities to nuclear receptors alone account for the potency of TTNPB. The binding affinities of TTNPB for the CRABPs are significantly lower than those of tRA. TTNPB did not compete with [3H]9-cis RA for binding to RXR alpha, beta, or gamma. Mouse limb bud cell cultures, a well characterized model for retinoid teratogenesis, were used to compare the metabolic disposition of TTNPB and tRA. In the media of limb bud cell cultures treated with either retinoid, the disappearance of TTNPB was significantly slower than that of tRA over 72 hr. Both retinoids reached approximately equal concentrations in cell uptake experiments; however, TTNPB disappeared from the limb bud cell at a significantly slower rate than did tRA. Collectively, these results indicate that high affinity binding to RARs, lower affinity to CRABPs, and resistance to metabolism contribute to the potency of TTNPB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/taap.1996.8047 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFJ Med Chem
January 2025
Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that , derived from NLRP3, inhibits inflammasome activation.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFPLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, Illinois, USA.
This study was undertaken to assess the antioxidant and neuropharmacological potentials of the methanol leaf extract of Acanthus ebracteatus (MAEL) through experimental and in silico methods. The phytochemical screening (PS) and GC-MS (gas chromatography-mass spectrometry) identified 28 phytochemicals with different classes in nature in MAEL. The MAEL revealed better antioxidant activity through various in vitro antioxidant assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!