To evaluate the direct effect of nitric oxide (NO) on vascular smooth muscle cell (SMC) proliferation in vivo, we used an expanded polytetrafluoroethylene (ePTFE)-based local infusion device to deliver an NO donor, proline/NO (PROLI/NO), to the luminal boundary layer of endarterectomized artery and the distal anastomosis of the graft in a canine model. Once delivered to the blood, PROLI/NO releases NO by a mechanism involving pH-dependent decomposition. Six dogs underwent bilateral femoral artery endarterectomies. ePTFE infusion devices, blindly primed with PROLI/NO to one artery or proline to the contralateral vessel, were anastomosed proximal to the injured segments so that each animal served as its own control. PROLI/NO or proline was continuously delivered for 7 days from an osmotic reservoir, through the wall of the graft infusion device. Euthanasia was carried out at 7 days, and the processed specimens were blindly analyzed for SMC proliferation at both graft anastomoses and endarterectomized segments by a bromodeoxyuridine index assay. All dogs survived with no clinical side effects. In comparing the treated and control vessels, NO released from PROLI/NO significantly reduced SMC proliferation by 43% (13.24 +/- 1.24% versus 23.24 +/- 1.01%, P = 0.004) at the distal anastomoses and by 68% (10.58 +/- 1.63% versus 25.17 +/- 3.39%, P = 0.007) at endarterectomized segments. However, there was no significant difference in blood flow measurements between treated and control arteries (56.25 +/- 6.50 ml/min versus 46.50 +/- 3.20 ml/min, P = 0.094). These data demonstrate that local boundary layer infusion of NO released from PROLI/NO significantly reduces SMC proliferation in injured arteries with no effect on regional blood flow. This study suggests a new strategy to inhibit early SMC proliferation in injured arteries and probably to control intimal hyperplastic lesion formation in the manipulated vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jsre.1996.4915 | DOI Listing |
Urol Res Pract
January 2025
Department of Pediatric Surgery, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak, Türkiye.
Objective: Bladder tissue models have been developed using smooth muscle cells (SMCs) on various scaffolds to mimic bladder morphology and physiology. This study investigates the effects of co-culturing fetal and adult SMCs on growth properties and protein profiles to understand cellular interactions and population kinetics.
Methods: Bladder tissue samples from 10 adult and 10 fetal New Zealand rabbits were divided into 5 groups: adult SMCs (A), fetal SMCs (F), 50%A+50%F (A+F), 75%A+25%F (3A+F), and 25%A+75%F (A+3F).
Adv Sci (Weinh)
January 2025
Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.
Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiotherapy Oncology, The Fourth Hospital of Hebei Medical University, No. 169, Tianshan Street, Hebei, Shijiazhuang, 050035, Hebei Province, China.
Breast cancer is the most common malignant tumor in the world, and its metastasis is the main cause of death in breast cancer patients. However, the differences between primary breast cancer tissue and lymphatic node, bone, and brain metastases at the single-cell level are not fully understood. We analyzed the microenvironment heterogeneity in samples of primary breast cancer (n = 4), breast cancer lymphatic node metastasis (n = 4), breast cancer brain metastasis (n = 3), and breast cancer bone metastasis (n = 2) using single-cell sequencing data from the GEO database.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2025
Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.
View Article and Find Full Text PDFRedox Biol
February 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!