A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. | LitMetric

AI Article Synopsis

  • Researchers studied how fetal calf serum (FCS) affects the development of bovine embryos in vitro.
  • They found that using FCS led to earlier blastocyst formation and a higher number of cells compared to cultures without any supplements.
  • The study suggests that specific components in the serum accelerate embryo development, particularly between crucial cell division stages.

Article Abstract

The effects of fetal calf serum (FCS) or serum fractions on the development of bovine embryos was investigated. Bovine zygotes were produced in vitro and were cultured in a semi-defined culture medium (mSOF). In the first experiment, blastocysts produced in mSOF supplemented with 10% whole heat-treated FCS or desalted FCS appeared about 1 day earlier, their proportion was significantly (P < 0.05) higher (whole: 30%, desalted: 29%) and they had significantly (P < 0.05) more cells at day 8 (119 cells, 127 cells) than did blastocysts produced in mSOF without any supplement (16%, 98 cells) or mSOF supplemented with a glucose concentration equivalent to that of serum (15%, 88 cells). Our results indicate that high molecular mass components (> 5 kDa) of serum are responsible for the effects of FCS on the kinetics of development, on the percentage of blastocysts obtained and the total number of cells in blastocysts. A further analysis using time-lapse microcinematography showed that the acceleration of development induced by serum occurred between the 9-16-cell and morula stages. Finally, in an experiment designed to analyse by microcinematography the effect of the addition of FCS using semen from a different bull to inseminate the oocytes, a different batch of serum and adding mSOF at a different time (42 h after insemination), acceleration was similarly observed between these two stages. Our microcinematographic studies demonstrate that the addition of FCS at two developmental stages (three-four-cell and five-eight-cell) before the 8-16-cell stage accelerates development just after this critical blocking stage.

Download full-text PDF

Source
http://dx.doi.org/10.1530/jrf.0.1090087DOI Listing

Publication Analysis

Top Keywords

fetal calf
8
calf serum
8
development bovine
8
bovine embryos
8
blastocysts produced
8
produced msof
8
msof supplemented
8
cells blastocysts
8
addition fcs
8
serum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!