Estimates of the overall reducing capacity of hexavalent chromium(VI) in some human body compartments were made by relating the specific reducing activity of body fluids, cell populations or organs to their average volume, number, or weight. Although these data do not have absolute precision or universal applicability, they provide a rationale for predicting and interpreting the health effects of chromium(VI). The available evidence strongly indicates that chromium(VI) reduction in body fluids and long-lived non-target cells is expected to greatly attenuate its potential toxicity and genotoxicity, to imprint a threshold character to the carcinogenesis process, and to restrict the possible targets of its activity. For example, the chromium(VI) sequestering capacity of whole blood (187-234 mg per individual) and the reducing capacity of red blood cells (at least 93-128 mg) explain why this metal is not a systemic toxicant, except at very high doses, and also explain its lack of carcinogenicity at a distance from the portal of entry into the organism. Reduction by fluids in the digestive tract, e.g. by saliva (0.7-2.1 mg/day) and gastric juice (at least 84-88 mg/day), and sequestration by intestinal bacteria (11-24 mg eliminated daily with feces) account for the poor intestinal absorption of chromium(VI). The chromium(VI) escaping reduction in the digestive tract will be detoxified in the blood of the portal vein system and then in the liver, having an overall reducing capacity of 3300 mg. These processes give reasons for the poor oral toxicity of chromium(VI) and its lack of carcinogenicity when introduced by the oral route or swallowed following reflux from the respiratory tract. In terminal airways chromium(VI) is reduced in the epithelial lining fluid (0.9-1.8 mg) and in pulmonary alveolar macrophages (136 mg). The peripheral lung parenchyma has an overall reducing capacity of 260 mg chromium(VI), with a slightly higher specific activity as compared to the bronchial tree. Therefore, even in the respiratory tract, which is the only consistent target of chromium(VI) carcinogenicity in humans (lung and sinonasal cavities), there are barriers hampering its carcinogenicity. These hurdles could be only overwhelmed under conditions of massive exposure by inhalation, as it occurred in certain work environments prior to the implementation of suitable industrial hygiene measures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/18.3.531DOI Listing

Publication Analysis

Top Keywords

reducing capacity
20
chromiumvi
10
human body
8
body compartments
8
potential toxicity
8
body fluids
8
lack carcinogenicity
8
digestive tract
8
respiratory tract
8
reducing
6

Similar Publications

A Review of Laboratory Studies on the Heterogeneous Chemistry of NO: Mechanisms and Uptake Kinetics.

J Phys Chem A

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.

View Article and Find Full Text PDF

Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.

View Article and Find Full Text PDF

Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.

It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.

View Article and Find Full Text PDF

Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure.

Sci Adv

January 2025

Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).

View Article and Find Full Text PDF

Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study.

Ann Med

December 2025

Department of Nursing, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.

Introduction: Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!