N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl ]-benzoyl]-L-glutamic acid (LY231514) is a novel pyrrolo[2,3-d]pyrimidine-based antifolate currently undergoing extensive Phase II clinical trials. Previous studies have established that LY231514 and its synthetic gamma-polyglutamates (glu3 and glu5) exert potent inhibition against thymidylate synthase (TS). We now report that LY231514 and its polyglutamates also markedly inhibit other key folate-requiring enzymes, including dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT). For example, the Ki values of the pentaglutamate of LY231514 are 1.3, 7.2, and 65 nM for inhibition against TS, DHFR, and GARFT, respectively. In contrast, although a similar high level of inhibitory potency was observed for the parent monoglutamate against DHFR (7.0 nM), the inhibition constants (Ki) for the parent monoglutamate are significantly weaker for TS (109 nM) and GARFT (9,300 nM). The effects of LY231514 and its polyglutamates on aminoimidazole carboxamide ribonucleotide formyltransferase, 5,10-methylenetetrahydrofolate dehydrogenase, and 10-formyltetrahydrofolate synthetase were also evaluated. The end product reversal studies conducted in human cell lines further support the concept that multiple enzyme-inhibitory mechanisms are involved in cytotoxicity. The reversal pattern of LY231514 suggests that although TS may be a major site of action for LY231514 at concentrations near the IC50, higher concentrations can lead to inhibition of DHFR and/or other enzymes along the purine de novo pathway. Studies with mutant cell lines demonstrated that LY231514 requires polyglutamation and transport via the reduced folate carrier for cytotoxic potency. Therefore, our data suggest that LY231514 is a novel classical antifolate, the antitumor activity of which may result from simultaneous and multiple inhibition of several key folate-requiring enzymes via its polyglutamated metabolites.

Download full-text PDF

Source

Publication Analysis

Top Keywords

folate-requiring enzymes
12
ly231514
10
pyrrolo[23-d]pyrimidine-based antifolate
8
ly231514 novel
8
ly231514 polyglutamates
8
key folate-requiring
8
ribonucleotide formyltransferase
8
inhibition dhfr
8
parent monoglutamate
8
cell lines
8

Similar Publications

Objective: Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes.

View Article and Find Full Text PDF

Pemetrexed is an antimetabolite agent that inhibits multiple folate-requiring enzymes and is used in the treatment of mesothelioma and non-small-cell lung cancer. One of its toxicities is isolated cutaneous swelling affecting the eyelids and/or orbit. The pathologic assessment or its management has not been addressed to date.

View Article and Find Full Text PDF

Pemetrexed disodium (Eli Lilly).

Curr Opin Investig Drugs

November 2001

Norman Consulting, Burnham, Bucks, UK.

Pemetrexed, a thymidylate synthase (TS) and transferase inhibitor, is in phase III trials with Eli Lilly as a potential treatment for several common solid tumors, including non-small cell lung cancer (NSCLC) and mesothelioma [321789], [410731]. Studies on pemetrexed have concluded that not only is the compound a TS inhibitor but also a potent inhibitor of human dihydrofolate reductase (DHFR). The results suggest that pemetrexed acts upon multiple intracellular targets and that the antitumor effect may be derived from its simultaneous inhibition of multiple folate-requiring enzymes [203662]: this compound has been designated as a multitargeted antifolate (MTA) [386680].

View Article and Find Full Text PDF

The novel pyrrolopyrimidine-based antifolate LY231514 (MTA), inhibits multiple folate-requiring enzymes including thymidylate synthase, glycinamide ribonucleotide formyltransferase and dihydrofolate reductase. Both thymidine and hypoxanthine are required to reverse MTA growth inhibition in leukaemia and colon cancer cells. Prevention of MTA growth inhibition by thymidine and/or hypoxanthine was investigated in two human lung (A549, COR L23) and two breast (MCF7, T47D) tumour cell lines, and the effect of the nucleoside/base transport inhibitor dipyridamole (DP) on thymidine and hypoxanthine rescue defined.

View Article and Find Full Text PDF

Folic acid (PteGlu)-enhanced intense synergy has been observed between nonpolyglutamylatable dihydrofolate reductase (DHFR) inhibitors and polyglutamylatable inhibitors of other folate-requiring enzymes, such as glycinamide ribonucleotide formyltransferase (GARFT) and thymidylate synthase. Since this phenomenon is potentially therapeutically useful, we explored its universality by examining the combined action of a DHFR inhibitor, trimetrexate (TMQ), with a GARFT inhibitor, 4-[2-(2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4,6][1,4]++ +thiazin-6-yl)-(S)-ethyl]-2,5-thienoylamino-L-glutamic acid (AG2034), in eight human cultured cell lines. Using a 96-well plate cell growth inhibition assay, four ileocecal adenocarcinoma cell lines [HCT-8, HCT-8/DW2 (Tomudex-resistant), HCT-8/DF2 (Tomudex-/FdUrd-resistant), and HCT-8/50 (adapted to 50 nM PteGlu)], three head and neck carcinoma cell lines [A253, FaDu, and Hep-2/500 (FdUrd-resistant)], and a non-small cell lung carcinoma cell line [H460] were treated for 96 hr with TMQ + AG2034 in the presence of 23 or 40 microM PteGlu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!