A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of ionizing radiation on the mechanical properties of human bone. | LitMetric

Allogeneic bone grafts are frequently sterilized by means of ionizing radiation. We investigated the effects of ionizing radiation on both quasistatic and impact mechanical properties of human bone. Specimens from four paired femora of four donors received doses of 29.5 kGy ("standard," frequently used by tissue banks), 94.7 kGy ("high"), or 17 kGy ("low") of ionizing radiation. Young's modulus was unchanged by any level of radiation. Radiation significantly reduced bending strength, work to fracture, and impact energy absorption; in each case, the severity of the effect increased from low to standard to high doses of radiation. Work to fracture was particularly severely degraded; specimens irradiated with the high dose absorbed only 5% of the energy of the controls. Radiation, even at relatively low doses, makes the bone more brittle and thereby reduces its energy-absorbing capacity. We suggest that because the level of radiation required to produce an acceptable level of viral inactivation (90 kGy) produces an unacceptable reduction in the mechanical integrity of the bone, low levels of radiation, sufficient to produce bacterial safety, should be used in conjunction with biological tests to ensure viral safety.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.1100150116DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
16
radiation
10
effects ionizing
8
mechanical properties
8
properties human
8
human bone
8
level radiation
8
work fracture
8
bone
5
radiation mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!