A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stargazer. | LitMetric

The excitability of layer V cortical pyramidal neurons was studied in vitro in the single-locus mutant mouse stargazer (stg), a genetic model of spike wave epilepsy. Field recordings in neocortical slices from mutant mice bathed in artificial cerebrospinal fluid revealed spontaneous synchronous network discharges that were never present in wild-type slices. Intracellular and whole cell recordings from stg/stg neurons in deep layers showed spontaneous giant depolarizing excitatory post-synaptic potentials generating bursts of action potentials, and a 78% reduction in the afterburst hyperpolarization. Whole cell recordings revealed gene-linked differences in active membrane properties in two types of regular spiking neurons. Single action potential rise and decay times were reduced, and the rheobase current was decreased by 68% in mutant cells. Plots of spike frequency-current relationships revealed that the gain of this relation was augmented by 29% in the mutant. Comparisons of visually identified pyramidal neurons firing properties in both genotypes revealed no difference in single action potential afterhyperpolarization. Voltage-clamp recordings showed an approximately threefold amplitude increase in a cesium-sensitive inward rectifier. No cell density or soma size differences were observed in the layer V pyramidal neuron population between the two genotypes. These results demonstrate an autonomous increase in cortical network excitability in a genetic epilepsy model. This defect could lower the threshold for aberrant thalamocortical spike wave oscillations in vivo, and may contribute to the mechanism of one form of inherited absence epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1997.77.2.621DOI Listing

Publication Analysis

Top Keywords

pyramidal neurons
12
layer cortical
8
cortical pyramidal
8
mutant mouse
8
mouse stargazer
8
spike wave
8
cell recordings
8
single action
8
action potential
8
neurons
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!