In an attempt to identify and characterize novel Schwann cell surface molecules with putative functions during development, maintenance, and regeneration of the peripheral nervous system (PNS), we have produced monoclonal antibodies against viable neonatal rat Schwann cells. Using a sensitive live cell ELISA protocol, three monoclonal antibodies reactive with cultured Schwann cells, designated 27B10, 26F2, and 27C7 were isolated. The 27B10 and 26F2 antibodies specifically labelled forskolin-stimulated secondary Schwann cells in vitro as determined by live cell ELISA implying that the expression of the antigens in situ is regulated by axonal contact. The observation that the antigens seemed to be associated with both Schwann cell phenotypes clearly discriminated them from the well characterized myelin proteins as well as from molecules known to be confined to the non-myelin-forming phenotype. Interestingly, both antigens were found to be concentrated at the nodes of Ranvier. Further studies therefore have to show whether the identified antigens share structural or functional homology with adhesion or channel molecules, which display a similar distribution. Following transection of the adult sciatic nerve, the 26F2 antigen was rapidly down-regulated in the distal nerve stump. The 27C7 antibody reacted with an 80 kDa cell surface molecule common to non-myelin-forming Schwann cells. No differences in expression of the antigen between forskolin-treated and untreated Schwann cells in vitro were found, suggesting that the antigen is expressed independently from axonal contact. Two weeks after nerve transection in the absence of myelinating Schwann cells, the antigen was associated with S-100-positive Schwann cells of the distal nerve stump. The antigen was found to be expressed also by non-neuronal tissues, the level of the protein declined towards the adult stage. Comparison of the 27C7 antigen with previously described marker molecules suggests that we have identified a novel Schwann cell surface antigen of the non-myelin-forming phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1098-1136(199703)19:3<213::aid-glia4>3.0.co;2-# | DOI Listing |
Commun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFActa Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!