A potential role for cAMP in regulating the differentiation of myoblasts has led us to examine the components of the cAMP signaling system, including the type IV, cAMP-specific phosphodiesterases. The full coding sequence of the phosphodiesterase PDE4D1 was inserted in the bacterial expression vector pGEX-KG. N- and C-terminal truncations were also placed in the same vector, allowing the expression and purification of glutathione S-transferase (GST)-PDE fusion proteins using glutathione-Sepharose. The purified PDE was active [V(max) = 318 +/- 18 nmol min(-1)(mg of protein)(-1)] and inhibited by RO 20-1724, rolipram, and MIX (IC50 values of 2, 0.4, and 40 microM, respectively). The requirement of PDE4D1 for a divalent cation was also examined. It was able to use Mg2+, Co2+, and Mn2+, but not Zn2+, suggesting that it is not a zinc hydrolase as has been proposed for other PDE types. Deletion of both C- and N-terminal regions affected the apparent native size of the enzyme. The C-terminal region was involved in dimer formation, whereas an N-terminal region was responsible for larger aggregates. Removal of the last 35 amino acids of an N-terminal 80-residue highly conserved region (UCR2) resulted in a 6-fold increase in PDE activity, providing evidence that this part of the molecule acts as an intramolecular inhibitor. The availability of a highly purified, enzymatically active protein in substantial quantities has allowed us to directly examine PDE4D1 for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9613483DOI Listing

Publication Analysis

Top Keywords

type camp-specific
8
recombinant expression
4
expression type
4
camp-specific phosphodiesterase
4
phosphodiesterase characterization
4
characterization structure-function
4
structure-function studies
4
studies deletion
4
deletion mutants
4
mutants potential
4

Similar Publications

Hypothyroidism is the most prevalent thyroid disorder and leads to adverse effects on the human body. Serum thyroid stimulating hormone (TSH) values have been related to polymorphisms in multiple genes that may be involved in the regulation of thyroid function. The single nucleotide polymorphism (SNP) rs2046045 is situated in the intron region of the phosphodiesterase 8B (PDE8B) gene, which encodes a high-affinity cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase widely expressed in thyroid tissue.

View Article and Find Full Text PDF

Large-scale genome-wide association studies (GWASs) have associated intronic variants in , encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287.

View Article and Find Full Text PDF

Novel mechanism of cyclic nucleotide crosstalk mediated by PKG-dependent proteasomal degradation of the Hsp90 client protein phosphodiesterase 3A.

J Biol Chem

October 2024

Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA. Electronic address:

Endothelial cAMP-specific phosphodiesterase PDE3A is one of the major negative regulators of the endothelial barrier function in acute lung injury models. However, the mechanisms underlying its regulation still need to be fully resolved. We show here that the PDE3A is a newly described client of the molecular chaperone heat shock protein 90 (hsp90).

View Article and Find Full Text PDF

Reversal of injury-associated retinal ganglion cell gene expression by a phosphodiesterase anchoring disruptor peptide.

Exp Eye Res

September 2024

Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA. Electronic address:

Loss of retinal ganglion cells (RGCs) is central to the pathogenesis of optic neuropathies such as glaucoma. Increased RGC cAMP signaling is neuroprotective. We have shown that displacement of the cAMP-specific phosphodiesterase PDE4D3 from an RGC perinuclear compartment by expression of the modified PDE4D3 N-terminal peptide 4D3(E) increases perinuclear cAMP and protein kinase A activity in cultured neurons and in vivo RGC survival after optic nerve crush (ONC) injury.

View Article and Find Full Text PDF

Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system.

Biomed Pharmacother

August 2024

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt,  Belgium. Electronic address:

Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!