High-performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ES-MS) and tandem mass spectrometry (MS-MS) was used to identify the products formed upon reaction of lysine-containing peptides with the neurotoxicant 2,5-hexanedione (2,5-HD). In addition, secondary autoxidative reaction products of the resultant alkylpyrroles with the biological thiol, glutathione, were characterized. ES mass spectra of the HPLC-separated conjugates showed intense [M+H]+ ions as well as several ions formed by amide and C-S bond cleavage. The glutathione conjugates of pyrrolylated amino acids and peptides were analyzed by ES ionization and MS-MS, and product-ion spectra showed fragmentation pathways typical of glutathione conjugates. ES-MS-MS analysis of a synthetic nonapeptide modeling a sequence found in neurofilament proteins showed pyrrole formation after incubation with 2,5-HD, and sequence ions were used to assign the position of the pyrrole adduct. Subsequent reaction of the pyrrolylated peptide with reduced glutathione was evidenced by a shift in m/z of the sequence ions of the reaction products with or without prior methylation. The results demonstrate the utility of ES-MS and ES-MS-MS in the characterization of xenobiotic-modified peptides and confirm that stable pyrrole-thiol conjugates are formed by the reaction of biological thiols with pyrrolylated peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-4347(96)00277-0DOI Listing

Publication Analysis

Top Keywords

glutathione conjugates
12
mass spectrometry
12
conjugates pyrrolylated
8
pyrrolylated amino
8
amino acids
8
acids peptides
8
tandem mass
8
formed reaction
8
reaction products
8
sequence ions
8

Similar Publications

Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline.

J Pharm Biomed Anal

January 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany. Electronic address:

Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry.

View Article and Find Full Text PDF

Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

RA-0002034 () is a potent covalent inhibitor targeting the alphavirus nsP2 cysteine protease. The species-dependent pharmacokinetics and metabolism of were investigated to evaluate its therapeutic potential. Pharmacokinetic profiling revealed rapid clearance in mice, predominantly mediated by glutathione -transferase (GST)-catalyzed conjugation.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!