Cerebellar deficient folia (cdf): a new mutation on mouse chromosome 6.

Mamm Genome

Jackson Laboratory, Bar Harbor, Maine 04609-1500, USA.

Published: February 1997

Cerebellar deficient folia, cdf, is a spontaneous autosomal recessive mutation in the mouse with unique pathology; the cerebellar cortex of the cdf/cdf mouse has only 7 folia instead of 10, which is the normal count for the C3H/HeJ strain in which this mutation arose. The cerebellum of the cdf/cdf mouse is hypoplastic and contains mineral deposits in the ventral vermis that are not present in controls. We used an intersubspecific intercross between C3H/HeSnJ-cdf/+ and Mus musculus castaneus (CAST/Ei) to map the cdf mutation to Chromosome (Chr) 6. The most likely gene order is D6Mit16-(cdf, D6Mit3)-D6Mit70-D6Mit29-D6Mit32, which positions cdf distal to lurcher (Lc) and proximal to motor neuron degeneration 2 (mnd2). The definitive visible phenotypes and histopathologies of cdf, Lc, and mnd2 support our mapping evidence that cdf is a distinct gene. The novel pathology of cdf should help elucidate the complicated process of cerebellar folia patterning and development. cdf recombined with mouse atonal homolog 1, Math1, the mouse homolog of the Drosophila atonal gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s003359900368DOI Listing

Publication Analysis

Top Keywords

cerebellar deficient
8
deficient folia
8
cdf
8
folia cdf
8
cdf mutation
8
mutation mouse
8
cdf/cdf mouse
8
mouse
6
cerebellar
4
folia
4

Similar Publications

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease.

Genes (Basel)

December 2024

Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China.

Background/objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear.

View Article and Find Full Text PDF

Wernicke's Encephalopathy (WE) is a rare but severe condition primarily caused by thiamine deficiency, often seen in pregnant women who experience severe vomiting, such as in hyperemesis gravidarum. This case report details a 38-year-old woman at 27 weeks of gestation who developed altered consciousness, cerebellar ataxia, and hyperlactatemia following persistent vomiting. Brain MRI demonstrated characteristic bilateral abnormalities consistent with WE.

View Article and Find Full Text PDF

Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring.

IBRO Neurosci Rep

June 2025

Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.

Background: Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!