Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae.

Biochim Biophys Acta

Institut de Biochimie et de Génétique Cellulaires du Centre National de la Recherche Scientifique, Université de Bordeaux II, France.

Published: February 1997

The effect of ATP and other nucleotides on the respiration of Saccharomyces cerevisiae mitochondria was investigated. It was observed that ATP induced a stimulation of the respiration rate only in the presence of a salt in mitochondria from the baker's yeast Yeast Foam, whereas an ATP-induced stimulation occurred even in the absence of salt in mitochondria from three different laboratory strains. In both cases, the stimulation was related to a collapse of the transmembrane potential, suggesting the opening of ion- and/or proton-conducting pathways. Not only ATP, but also GTP and CTP, induced these pathways. Moreover, a similar stimulation was obtained with GDP and its analog GDP-beta-S. The fact that, as opposed to NTPs, GDP did not induce any non-specific anion channel, allowed us to use it to demonstrate unambiguously that a proton-conducting pathway was opened through the inner mitochondrial membrane of laboratory strains but not of Yeast Foam. Three additional aspects of this nucleotide-induced permeability were investigated. (i) The proton-conducting pathway was insensitive to Mg2+, whereas the anion-conducting pathway was fully inhibited by 4 mM Mg2-. (ii) The proton-conducting pathway of mitochondria isolated from laboratory strains was opened by the action of nucleotides outside the mitochondrion, since it was fully insensitive to (carboxy)atractyloside, and fully active in mitochondria isolated from op1 and delta anc strains. On the other hand, the cation-conducting pathway of Yeast Foam mitochondria was partly sensitive to (carboxy)atractyloside and insensitive to bongkrekic acid, suggesting a role of the conformational state of ANC in this activity. (iii) Both the proton and cation-conducting pathways were inhibited by very low concentrations of vanadate, under conditions where this oxyanion was polymerized to decavanadate: a competitor to nucleotide-binding sites on some enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2736(96)00215-5DOI Listing

Publication Analysis

Top Keywords

yeast foam
12
laboratory strains
12
proton-conducting pathway
12
saccharomyces cerevisiae
8
salt mitochondria
8
mitochondria isolated
8
mitochondria
7
strains
5
pathway
5
conditions allowing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!