Results of traditional laboratory bioassays may not accurately represent ecological (field) host specificity of entomopathogens but, if carefully interpreted, may be used to predict the ecological host specificity of pathogens being considered for release as classical biological control agents. We conducted laboratory studies designed to evaluate the physiological host specificity of microsporidia, which are common protozoan pathogens of insects. In these studies, 49 nontarget lepidopteran species indigenous to North America were fed five biotypes of microsporidia that occur in European populations of Lymantria dispar but are not found in North American populations of L. dispar. These microsporidia, Microsporidium sp. from Portugal, Microsporidium sp. from Romania, Microsporidium sp. from Slovakia, Nosema lymantriae, and Endoreticulatus sp. from Portugal, are candidates for release as classical biological control agents into L. dispar populations in the United States. The microsporidia produced a variety of responses in the nontarget hosts and, based on these responses, the nontarget hosts were placed in the following categories: (1) no infection (refractory), (2) atypical infections, and (3) heavy infections. Endoreticulatus sp. produced patent, host-like infections in nearly two-thirds of the nontarget hosts to which it was fed. Such generalist species should not be recommended for release. Infections comparable to those produced in L. dispar were produced in 2% of the nontarget hosts fed Microsporidium sp. from Portugal, 19% of nontarget hosts fed Microsporidium sp. from Romania, 13% fed spores of Microsporidium sp. from Slovakia, and 11% of nontarget species fed N. lymantriae. The remaining nontarget species developed infections that, despite production of mature spores, were not typical of infection in L. dispar. We believe it is very unlikely that these atypical infections would be horizontally transmitted within nontarget insect populations in the United States.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jipa.1996.4650DOI Listing

Publication Analysis

Top Keywords

nontarget hosts
20
host specificity
16
hosts fed
12
nontarget
9
specificity microsporidia
8
european populations
8
populations lymantria
8
lymantria dispar
8
indigenous north
8
north american
8

Similar Publications

Identification of serum biomarkers for cystic echinococcosis in sheep through untargeted metabolomic analysis using LC-MS/MS technology.

Parasit Vectors

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.

Background: Echinococcosis is a zoonotic disease caused by an Echinococcus tapeworm infection. While diagnostic methods for humans often rely on ultrasound imaging and immunodiagnostic techniques, diagnosis in intermediate hosts typically has no widely used diagnostic markers, hampering disease control efforts.

Methods: The differences in serum metabolites of sheep infected with Echinococcus granulosus and a control group were analyzed using ultrahigh-performance liquid chromatography (UHPLC) separation with tandem mass spectrometry (MS/MS) detection.

View Article and Find Full Text PDF

Food allergies manifest as systemic or digestive allergic responses induced by food allergens, and their progression has been demonstrated to be intimately associated with the host's gut microbiota. Our preceding investigation has revealed that the probiotic strains CCFM1189 and CCFM1190 possess the capability to mitigate the symptoms of food allergy in mice. However, the underlying mechanisms and material foundations through which these probiotic strains exert their effects remain enigmatic.

View Article and Find Full Text PDF

Locomotor activity and physiological responses of parasite-infected Gammarus fossarum exposed to the herbicide metazachlor.

Environ Pollut

November 2024

Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, D-45141, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstraße 5, D-45141, Essen, Germany; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa. Electronic address:

Herbicides are among the most commonly found contaminants in freshwater ecosystems. Standard tests are frequently employed to assess their ecotoxicological impacts, but sublethal endpoints in non-target species are often not considered. In addition, ecotoxicological investigations rarely take into account that many species from field populations are naturally infected with parasites.

View Article and Find Full Text PDF
Article Synopsis
  • Switchgrass is a sustainable biofuel option due to its quick growth, low requirements, and high yields, but reducing its lignin content could enhance energy conversion efficiency.
  • Engineered switchgrass expressing QsuB shows decreased lignin and changes in microbial communities, with specifically lower fungal diversity in its roots and rhizosphere compared to wild-type plants.
  • The study reveals how plant metabolism changes can impact the microbiome, aiding in the development of bioengineering strategies while considering potential unintended effects on microbial interactions.
View Article and Find Full Text PDF

Many endosymbionts of insects have been shown to manipulate and alter their hosts' reproduction with implications for agriculture, disease transmission, and ecological systems. Less studied are the microbiota of classical biological control agents and the implications of inadvertent endosymbionts in laboratory colonies for field establishment and effects on target pests or nontarget organisms. While native-range field populations of agents may have a low incidence of vertically transmitted endosymbionts, quarantine and laboratory rearing of inbred populations may increase this low prevalence to fixation in relatively few generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!