To determine whether lipid peroxidation is required for apolipoprotein B (apoB) carbonyl formation of human low-density lipoproteins (LDL) during copper-mediated oxidation, we investigated oxidation of native and probucol-preloaded LDL by measuring thiobarbituric acid-reactive substances (TBARS) and apoB carbonyls. Probucol was used because it is known to inhibit lipid peroxidation, but not protein modification. During copper-mediated oxidation, apoB carbonyls formed in a time-dependent manner; high copper concentrations (> or = 30 microM) resulted in saturation of apoB carbonyl content. ApoB carbonyl formation and lipid peroxidation were linearly related during incubation of LDL with copper for 3 h. During Cu(2+)-mediated LDL oxidation of probucol-LDL, TBARS production was very low, nonetheless apoB carbonyls increased significantly, and vitamin E was depleted. Bovine serum albumin (fatty acid free; BSA) oxidation in the presence of trace amounts of LDL, linoleic acid, or tert-butyl hydroperoxide was used to further understand the role of lipid peroxidation in apoB carbonyl formation. Protein carbonyl formation during BSA incubation with copper (either Cu+ or Cu2+) was trivial; however, further addition of linoleic acid (1:1, m/m), trace amounts of LDL (10 micrograms/ml), or tert-butyl hydroperoxide (1:1, m/m) markedly increased protein carbonyl formation. These results demonstrate that lipid peroxidation enhances copper-mediated carbonyl formation and suggest that copper ions react with LDL lipid hydroperoxides producing the necessary reactive species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1996.9867 | DOI Listing |
J Mol Graph Model
January 2025
Department of Refraction, Baoji Aier Eye Hospital, Bao'ji, 721000, China. Electronic address:
In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components.
View Article and Find Full Text PDFSilylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Animal Science, Michigan State University, East Lansing, 48824, USA. Electronic address:
Fatty liver impairs liver function and reduces productivity in dairy cows. Our previous in vivo findings demonstrated that branched-chain amino acids (BCAA) or branched-chain ketoacid (BCKA) improved liver function and lactation performance in dairy cows; however, the underlying mechanisms remain unclear. This study aimed to assess the impact of BCAA or BCKA supplementation on intracellular triglyceride (TG) accumulation, lipid metabolism, antioxidant response, and apoptosis in hepatocytes.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.
View Article and Find Full Text PDFTetrahedron
February 2025
Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).
Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!