The specificities of the beta-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae, and Canavalia ensiformis (jack bean) have been studied by capillary zone electrophoresis. Various di- and oligosaccharides as well as a biantennary asialo N-glycan were used as substrates. Following enzymatic hydrolysis, the mixtures of substrates and products were derivatized with ethyl 4-aminobenzoate and separated by high-performance capillary electrophoresis in a borate buffer system using uv detection. Baseline separation of the respective peaks was obtained in 4 min, allowing the analysis of a large number of samples. Therefore, initial rates of hydrolysis could be determined. The beta-galactosidase from A. oryzae exhibited minimal activity toward Galbeta1-3GlcNAc. In contrast to the enzyme from S. pneumoniae which is almost specific for beta1-4 linkages, the Aspergillus galactosidase readily hydrolyzed Galbeta1-4GlcNAc and Galbeta1-6GlcNAc. Neither of the four beta-galactosidases acted upon Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Gl c (lacto-N-fucopentaose III) even though the corresponding nonfucosylated oligosaccharides were good substrates. With the exception of the enzyme from E. coli, the beta-galactosidases degalactosylated a biantennary N-linked oligosaccharide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abio.1996.9973 | DOI Listing |
Microb Cell Fact
December 2024
Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt.
Background: The main obstacle facing the utilization of microbial enzymes in industrial applications is the high cost of production substrates. As a result of the mentioned different wastes (coffee powder waste, dates nawah powder, molokhia stems, pea peels, lemon peels, and corn cobs) were investigated as low-cost nutritional substrates for the production of microbial β-galactosidase in this study. The purification of the enzyme and its kinetic and thermodynamics were investigated.
View Article and Find Full Text PDFVopr Pitan
November 2024
All-Russian Scientific Research Institute of Food Biotechnology - a branch of the Federal Research Centre of Nutrition, Biotechnology and Food Safety, 111033, Moscow, Russian Federation.
The development of technologies for producing bacterial concentrates and enzyme preparations using domestic microbial strains is an urgent task. The use of whey protein hydrolysates as components of nutrient media for probiotic bacteria consortia for the cultivation of lactic acid and bifidobacteria makes it possible to improve and develop innovative processes for obtaining bacterial concentrates with the required functional properties for the production of dietary supplements. A consortium of probiotic microorganisms (lactic acid and bifidobacteria) was created in the All-Russian Scientific Research Institute of Food Biotechnology as a starter culture for specialized dairy products.
View Article and Find Full Text PDFBiotechnol Appl Biochem
November 2024
Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey.
One of the main goals of contemporary biotechnology has been the development of novel immobilized enzyme formulations. In the present study, the industrially important β-galactosidase was trapped in a polyvinyl alcohol (PVA) gel to immobilize it. The optimization of immobilization method and characterization of the immobilized enzyme were studied.
View Article and Find Full Text PDFMolecules
October 2024
Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Glycoside hydrolases have been implicated in a wide range of human conditions including lysosomal storage diseases. Consequently, many researchers have directed their efforts towards identifying new classes of glycoside hydrolase inhibitors, both synthetic and from natural sources. A large percentage of such inhibitors are reversible competitive inhibitors that bind in the active site often due to them possessing structural features, often a protonatable basic nitrogen atom, that mimic the enzymatic transition state.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Tannins, one of the most common anti-nutritional factors in feed, can be effectively degraded by various enzymes secreted by (). The cultivation method of fungi significantly impacts gene expression, which influences the production of enzymes and metabolites. In this study, we analyzed the tannin biodegredation efficiency and the transcriptomic responses of in liquid and solid cultures with tannin added.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!