Two methods of collecting osteoblast-like cells from newborn rat calvaria were tested, either placing individual glass fragments or tipping dense glass beads onto the endocranial surface of periosteum-free bone. Inoculated at high density, cells collected by using these two methods form large mineralized plates after three weeks of culture. The main purpose of our investigation was to analyze the progressive formation of this mineralized structure and to localize alkaline phosphatase activity. At the beginning of the culture, flattened cells gathered into multilayers and synthesized collagen fibers. Cells in the upper layer became rapidly cuboidal in shape and continued to secrete collagen at their basal pole, whereas other cells became progressively embedded in the extracellular matrix. The upper cells featured ultrastructural characters of osteoblasts, whereas the embedded cells resembled osteocytes. After two weeks, the matrix began to mineralize: crystals appeared on collagen fibers, on matrix vesicles, and on cell debris. During the first days of the culture, the alkaline phosphatase activity was localized on the plasma membranes and on the collagen fibers. Thereafter, only the upper cells and collagen fibers that were juxtaposed to these cells showed alkaline phosphatase activity. In addition, the presence of mineralized matrix prevented the reaction product from being visualized on collagen fibers. The ultrastructural analysis reveals large mineralized plates with a structure resembling that of bone in vivo. This culture appears to be an appropriate model to study bone formation and regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002239900217 | DOI Listing |
Connect Tissue Res
January 2025
Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo, Japan.
Objective: This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium.
Methods: Fascia samples with varying extensibility were examined using biochemical and microscopic methods.
Results: Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles.
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate.
Purpose: To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear.
Study Design: Controlled laboratory study.
Theriogenology
January 2025
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil. Electronic address:
This study aimed to investigate the changes induced by the culture system and the effect of ascorbic acid and resveratrol on collagen fibers, stromal cells, follicle growth and survival, as well as antioxidant enzyme activity in cultured bovine ovarian tissues. In experiment 1, bovine ovarian fragments were cultured in α-minimum essential medium (α-MEM) for 6 days. Before and after culturing, the fragments were fixed and processed to assess follicular morphology and diameters, stromal cell survival, collagen fibers, and glycosaminoglycans (GAGs).
View Article and Find Full Text PDFIntroduction: To determine the effects of atorvastatin on cardiac function and hemodynamics and to investigate its functional mechanism on cardiac fibrosis in acute myocardial infarction (AMI) rats.
Methods: Cardiac functions and hemodynamic changes were evaluated in each group on day 28. Quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry were performed to detect the expression of notch1, transforming growth factor-β (TGF-β), Smad2, Smad7, as well as myocardial fibrosis factors (i.
Mater Today Bio
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!