This study tested whether Gd-BOPTA/Dimeg or Gd-DTPA exerts greater relaxation enhancement for blood and reperfused infarcted myocardium. Relaxivity of Gd-BOPTA is increased by weak binding to serum albumin. Thirty-six rats were subjected to reperfused infarction before contrast (doses = 0.05, 0.1, and 0.2 mmol/kg). delta R1 was repeatedly measured over 30 min. Gd-BOPTA caused greater delta R1 for blood and myocardium than did Gd-DTPA; clearance of both agents from normal- and infarcted myocardium was similar to blood clearance; plots of delta R1 myocardium/delta R1 blood showed equilibrium phase contrast distribution. Fractional contrast agent distribution volumes were approximately 0.24 for both agents in normal myocardium, 0.98 and 1.6 for Gd-DTPA and Gd-BOPTA, respectively, in reperfused infarction. The high value for Gd-BOPTPA was ascribed to greater relaxivity in infarction versus blood. It was concluded that Gd-BOPTA/Dimeg causes a greater delta R1 than Gd-DTPA in regions which contain serum albumin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159111PMC
http://dx.doi.org/10.1002/mrm.1910370324DOI Listing

Publication Analysis

Top Keywords

infarcted myocardium
12
reperfused infarcted
8
serum albumin
8
reperfused infarction
8
greater delta
8
myocardium
5
gd-dtpa
5
blood
5
alterations normal
4
reperfused
4

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF
Article Synopsis
  • Myocardial ischemia/reperfusion injury (MIRI) is a major complication after myocardial infarction, and the role of mitochondria-related genes in this process is not well understood.
  • Researchers utilized specific datasets (GSE67308 and GSE61592) to identify genes associated with MIRI and found glycine decarboxylase (Gldc) to be significantly elevated in MIRI models.
  • Experiments showed that reducing Gldc levels improved cell survival and reduced inflammation during hypoxia/reperfusion injury, indicating its potential as a diagnostic and therapeutic target for MIRI.
View Article and Find Full Text PDF

The presence of redox-active molecules containing catenated sulfur atoms (supersulfides) in living organisms has led to a review of the concepts of redox biology and its translational strategy. Glutathione (GSH) is the body's primary detoxifier and antioxidant, and its oxidized form (GSSG) has been considered as a marker of oxidative status. However, we report that GSSG, but not reduced GSH, prevents ischemic supersulfide catabolism-associated heart failure in male mice by electrophilic modification of dynamin-related protein (Drp1).

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!