We asked whether GABA(A) and NMDA receptors may act in synergy in neonatal hippocampal slices, at a time when GABA exerts a depolarizing action. The GABA(A) receptor agonist isoguvacine reduced the voltage-dependent Mg2+ block of single NMDA channels recorded in cell-attached configuration from P(2-5) CA3 pyramidal neurons and potentiated the Ca2+ influx through NMDA channels. The synaptic response evoked by electrical stimulation of stratum radiatum was mediated by a synergistic interaction between GABA(A) and NMDA receptors. Network-driven Giant Depolarizing Potentials, which are a typical feature of the neonatal hippocampal network, provided coactivation of GABA(A) and NMDA receptors and were associated with spontaneous and synchronous Ca2+ increases in CA3 pyramidal neurons. Thus, at the early stages of development, GABA is a major excitatory transmitter that acts in synergy with NMDA receptors. This provides in neonatal neurons a hebbian stimulation that may be involved in neuronal plasticity and network formation in the developing hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(00)80265-2DOI Listing

Publication Analysis

Top Keywords

nmda receptors
20
gabaa nmda
16
mediated synergistic
8
receptors neonatal
8
neonatal hippocampal
8
nmda channels
8
ca3 pyramidal
8
pyramidal neurons
8
nmda
7
gabaa
5

Similar Publications

The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus.

Cell

January 2025

University of Chinese Academy of Sciences, Beijing, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). However, subunit assembly and molecular architecture of endogenous NMDARs (eNMDARs) in the brain remain elusive. Using conformation- and subunit-dependent antibodies, we purified eNMDARs from adult rat cerebral cortex and hippocampus.

View Article and Find Full Text PDF

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!