A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The zebrafish homologue of the ret receptor and its pattern of expression during embryogenesis. | LitMetric

The c-ret proto-oncogene, a member of the receptor tyrosine kinase gene superfamily, plays a critical role in the development of the excretory system and the enteric and autonomic nervous systems of mammalian embryos. To study the potential function of the c-ret locus in lower vertebrates, we have isolated its zebrafish homologue, ret1 and established its expression pattern during embryogenesis. Ret1 mRNA first appears during early somitogenesis in the presumptive brain, spinal cord and excretory system. Within the CNS, expression of ret1 is detected in primary motor and sensory (Rohon-Beard) neurons. Ret1 transcripts are also expressed in subsets of neural crest cells and cranial ganglia as well as in the enteric nervous system. In the excretory system, expression is detected in the developing nephric duct and the pronephros. Our findings reveal a remarkable similarity in the expression pattern of c-ret between higher and lower vertebrates, suggesting that the function of this locus has been conserved throughout vertebrate evolution. Furthermore, the conservation of ret1 expression in cell types which remain unaffected by the mammalian c-ret mutations, such as motor and sensory neurons, suggests a function of this receptor in these cell lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1201048DOI Listing

Publication Analysis

Top Keywords

excretory system
12
zebrafish homologue
8
lower vertebrates
8
expression pattern
8
motor sensory
8
expression
6
ret1
5
homologue ret
4
ret receptor
4
receptor pattern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!