Tenascin (TN) is an extracellular matrix glycoprotein that is expressed in a characteristic spatiotemporal pattern during development and is up-regulated in the adult during tumorigenesis, wound healing, and nerve regeneration. In previous studies, we identified a promoter within the proximal 250 bp upstream of the mouse TN gene that contains several putative regulatory elements that are conserved among vertebrate TN genes. We have identified four different DNA elements within this promoter and show that they contribute in different ways to TN gene expression in NIH 3T3 fibroblasts, C6 glioma cells, and N2A neuroblastoma cells. These elements comprise a binding site for Krox proteins, one for nuclear factor 1, an octamer motif that binds POU-homeodomain proteins, and a novel TN control element. The nuclear factor 1 and TN control element had positive effects on TN promoter activity and formed similar DNA-protein complexes with nuclear extracts from all three cell lines. The Krox element had a negative effect on TN promoter activity in N2A cells, a positive effect in C6 cells, and no effect in NIH 3T3 cells. Two DNA binding complexes, one correlated with the negative and the other with the positive activities of the Krox element, were found to contain the protein Krox24. In cotransfection experiments, the octamer motif was required for induction of TN promoter activity by the POU-homeodomain protein Brn2 in N2A cells but was inactive in C6 cells. Consistent with these findings, N2A cells transfected with Brn2 formed octamer-binding complexes containing N-Oct3, the transcriptionally active form of Brn2, whereas complexes formed in C6 cells contained only N-Oct5A and N-Oct5B. Our results provide a striking example of the diversity of regulatory mechanisms that can be called forth by combining different promoter motifs with transcriptional activators or repressors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC20005 | PMC |
http://dx.doi.org/10.1073/pnas.94.5.1846 | DOI Listing |
Heliyon
January 2025
Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China.
Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!