This study investigates how visual and tactile sensory information, as well as biomechanical effects due to differences in physical characteristics of the prey, influence feeding behavior in the frog Cyclorana novaehollandiae. Video motion analysis was used to quantify movement patterns produced when feeding on five prey types (termites, waxworms, crickets, mice and earthworms). Twelve kinematic variables differed significantly among prey types, and twelve variables were correlated with prey characteristics (including mass, length, height and velocity of movement). Results indicate that C. novaehollandiae uses a different strategy to capture each prey type. Visual assessment of prey characteristics appeared to be more important in modulating feeding behavior that tactile cues or biomechanical effects. We propose a hierarchical hypothesis of behavioral choice, in which decisions are based primarily on visual analysis of prey characteristics. In this model, the frogs first choose between jaw prehension and tongue prehension based on prey size. If they have chosen jaw prehension, they next choose between upward or downward head rotation based on length and height of the prey. If they have chosen tongue prehension, they next choose between behavior for fast and slow prey. Final decisions may be the result of behavioral fine tuning based on tactile feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s003590050040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!