The complete nucleotide sequence of a 39,090 bp segment from the left arm of yeast chromosome IV was determined. Twenty-one open reading frames (ORFs) longer than 100 amino acids and a Gly-tRNA gene were discovered. Nine of the 21 ORFs (D0892, D1022, D1037, D1045, D1057, D1204, D1209, D1214, D1219) correspond to the previously sequenced Saccharomyces cerevisiae genes for the NAD-dependent glutamate dehydrogenase (GDH), the secretory component (SHR3), the GABA transport protein (UGA4), the high mobility group-like protein (NHP2), the hydroxymethylbilane synthase (HEM3), the methylated DNA protein-cysteine S-methyltransferase (MGT1), a putative sugar transport protein, the Shm1 protein (SHM1) and the anti-silencing protein (ASF2). The inferred amino acid sequences of 11 ORFs show significant similarity with known proteins from various organisms, whereas the remaining ORF does not share any similarity with known proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-0061(199702)13:2<163::AID-YEA54>3.0.CO;2-4DOI Listing

Publication Analysis

Top Keywords

nucleotide sequence
8
yeast chromosome
8
open reading
8
reading frames
8
transport protein
8
protein shm1
8
similarity proteins
8
protein
5
sequence segment
4
segment yeast
4

Similar Publications

Phenotypic Differences Between the Epidemic Strains of Vesicular Stomatitis Virus Serotype Indiana 98COE and IN0919WYB2 Using an In-Vivo Pig () Model.

Viruses

December 2024

National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.

During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.

View Article and Find Full Text PDF

Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in helps in better adapting the phages to the systems present in the pathogenic bacteria.

View Article and Find Full Text PDF

The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.

View Article and Find Full Text PDF

Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!