The RAD14 gene of Saccharomyces cerevisiae is required for the incision step of the nucleotide excision repair process. The Rad14 protein can bind zinc, possesses a potential zinc finger DNA binding domain and has been shown to bind specifically to damaged DNA. Differences in UV sensitivity exist between a rad14 deletion strain and a putative rad14 point mutant, the point mutant being more resistant to UV than the deletion strain. Here, we confirm that the rad14 deletion strain repairs neither UV-induced cyclobutane pyrimidine dimers (CPDs) nor endonuclease III-sensitive damage sites, whereas the point mutant cannot repair the former but can repair the latter. From this it can be inferred that the point mutant produces an altered protein product allowing recognition of endonuclease III sensitive sites but not CPDs. To investigate this, the rad14 mutant allele was sequenced. It contained two GC-AT transition mutations when compared to the wild-type RAD14 gene sequence. When the rad14 point mutant sequence is translated, alterations within the putative zinc finger binding domain are observed, with one of the cysteine residues of the zinc binding motif being replaced by tyrosine. This suggests that alterations within the zinc finger binding domain of the Rad14 protein cause changes to the damage recognition properties of the protein. The use of the Rad14 protein from the point mutant should assist in experiments investigating the in vitro binding properties of the Rad14 protein to different types of DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0061(199701)13:1<31::AID-YEA60>3.0.CO;2-4 | DOI Listing |
Unlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
Sugarcane has the most complex polyploid genome in the world, and sugar-related traits are one of the most important aims in sugarcane breeding. It is essential to construct a representative pan-transcriptome that contains all transcripts of a species for studies on genetic diversity, population expression, and omics analyses in sugarcane. In this study, we constructed the first comprehensive pan-transcriptome for sugarcane, and 8434 highly reliable open reading frames were found, which were not aligned with any published sugarcane genome.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA.
The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.
View Article and Find Full Text PDFPLoS Biol
January 2025
Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!