A new method for treating amblyopia is proposed, making use of the phenomenon of polarized light interference. It helps act simultaneously on the brightness, contrast frequency, and color sensitivity in response to patterns. The method was used in the treatment of 36 children. In group 1 (n = 20) it was combined with the traditional methods. Such treatment was more effective than in controls treated routinely. Group 2 consisted of 16 children in whom previous therapy was of no avail. Visual function was improved in 7 of them.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phenomenon polarized
8
polarized light
8
light interference
8
[the possibility
4
possibility phenomenon
4
interference treating
4
treating amblyopia]
4
amblyopia] method
4
method treating
4
treating amblyopia
4

Similar Publications

The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.

View Article and Find Full Text PDF

Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. Although high entropy relaxor ferroelectric exhibited enormous potential in functional materials, the chemical short-range order, which is a common phenomenon in high entropy alloys to modulate performances, have been paid less attention here. We design a chemical short-range order strategy to modulate polarization response under external electric field and achieve substantial enhancements of energy storage properties, i.

View Article and Find Full Text PDF

Magnetic semiconductors with spin-polarized non-metallic atoms are usually overlooked in applications because of their poor performances in magnetic moments and under critical temperatures. Herein, magnetic characteristics of 2D pentagon-based XN (X = B, Al, and Ga) are revealed based on first-principles calculations. It was proven that XN structures are antiferromagnetic semiconductors with bandgaps of 2.

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Electrorheological fluids are suspensions that are characterized by a strong functional dependence of their constitutive behavior on the local electric field. While such fluids are known to be promising in different applications of microfluidics including electrokinetic flows, their capabilities of controlling ion transport and preferential solute segregation in confined fluidic systems remain to be explored. In this work, we bring out the unique role of electrorheological fluids in orchestrating the selective enrichment and depletion of charged species in variable area microfluidic channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!