AI Article Synopsis

  • A study using a human bronchial xenograft model explored why cystic fibrosis (CF) lungs struggle to kill bacteria effectively, noting high NaCl levels in airway surface fluid.
  • The research identified the gene for human beta-defensin (hBD-1), a protein crucial for fighting bacteria like P. aeruginosa, which is expressed in both non-CF and CF lungs.
  • The findings indicate that hBD-1's antimicrobial abilities are hindered in CF due to salt interference, highlighting its significance in innate immune responses.

Article Abstract

A human bronchial xenograft model was used to characterize the molecular basis for the previously described defect in bacterial killing that is present in the cystic fibrosis (CF) lung. Airway surface fluid from CF grafts contained abnormally high NaCl and failed to kill bacteria, defects that were corrected with adenoviral vectors. A full-length clone for the only known human beta-defensin (i.e., hBD-1) was isolated. This gene is expressed throughout the respiratory epithelia of non-CF and CF lungs, and its protein product shows salt-dependent antimicrobial activity to P. aeruginosa. Antisense oligonucleotides to hBD-1 ablated the antimicrobial activity in airway surface fluid from non-CF grafts. These data suggest that hBD-1 plays an important role in innate immunity that is compromised in CF by its salt-dependent inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(00)81895-4DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
8
airway surface
8
surface fluid
8
antimicrobial activity
8
human beta-defensin-1
4
beta-defensin-1 salt-sensitive
4
salt-sensitive antibiotic
4
antibiotic lung
4
lung inactivated
4
inactivated cystic
4

Similar Publications

Background: Diabetes affects half of the patients with cystic fibrosis who are aged 30 years and older. Diabetes progresses asymptomatically over a long period of time. Two treatment options are possible: start insulin as soon as cystic fibrosis diagnosis is made with the additional constraints of cystic fibrosis or wait while monitoring the patient's clinical condition and start insulin when diabetes symptoms develop and therefore later.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) of elexacaftor/tezacaftor/ivacaftor (ETI) remains challenging due to a lack of clarity around the parameters that govern ETI plasma concentrations, whilst the use of concomitant CYP3A inducers rifabutin and rifampicin is not recommended. We present the complexities of TDM for ETI performed in a person with cystic fibrosis and refractory pulmonary disease. Utilising National Association of Testing Authorities (NATA) accredited assays and target considerations published by the Therapeutic Goods Administration (TGA), Australia, ETI plasma concentration variability was monitored over the course of an acute admission with added complexity from an antibiotic regimen including rifabutin, a moderate cytochrome P450 3A (CYP3A) inducer, and clofazimine, a mild CYP3A inhibitor.

View Article and Find Full Text PDF

The reason why certain bacteria, , (PA), produce acetylated alginate (Alg) in their biofilms remains one of the most intriguing facts in microbiology. Being the main structural component of the secreted biofilm, like the one formed in the lungs of cystic fibrosis (CF) patients, Alg plays a crucial role in protecting the bacteria from environmental stress and potential threats. Nonetheless, to investigate the PA biofilm environment and its lack of susceptibility to antibiotic treatment, the currently developed biofilm models use native seaweed Alg, which is a non-acetylated Alg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!