Site-directed mutagenesis of glutamate 166 in two beta-lactamases. Kinetic and molecular modeling studies.

J Biol Chem

Centre d'Ingénierie des Protéines and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, Sart-Tilman, B-4000 Liège, Belgium.

Published: February 1997

AI Article Synopsis

Article Abstract

The catalytic pathway of class A beta-lactamases involves an acyl-enzyme intermediate where the substrate is ester-linked to the Ser-70 residue. Glu-166 and Lys-73 have been proposed as candidates for the role of general base in the activation of the serine OH group. The replacement of Glu-166 by an asparagine in the TEM-1 and by a histidine in the Streptomyces albus G beta-lactamases yielded enzymes forming stable acyl-enzymes with beta-lactam antibiotics. Although acylation of the modified proteins by benzylpenicillin remained relatively fast, it was significantly impaired when compared to that observed with the wild-type enzyme. Moreover, the E166N substitution resulted in a spectacular modification of the substrate profile much larger than that described for other mutations of Omega-loop residues. Molecular modeling studies indicate that the displacement of the catalytic water molecule can be related to this observation. These results confirm the crucial roles of Glu-166 and of the "catalytic" water molecule in both the acylation and the deacylation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.9.5438DOI Listing

Publication Analysis

Top Keywords

molecular modeling
8
modeling studies
8
water molecule
8
site-directed mutagenesis
4
mutagenesis glutamate
4
glutamate 166
4
166 beta-lactamases
4
beta-lactamases kinetic
4
kinetic molecular
4
studies catalytic
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!