4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in rodents and is believed to be a causative factor for lung cancer in smokers. NNK also may be involved in oral cancer etiology in users of smokeless tobacco products. Pyridine-N-oxidation of NNK and its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), produces NNK-N-oxide and NNAL-N-oxide, respectively, which are detoxification products of NNK metabolism and are excreted in the urine of rodents and primates. Our goal is to develop a panel of urinary biomarkers to assess the metabolic activation and detoxification of NNK in humans. In this study, we developed methodology to analyze human urine for NNK-N-oxide and NNAL-N-oxide. The key step in the method was conversion of the N-oxides to NNK and NNAL by treatment with Proteus mirabilis. The resulting samples were then analyzed essentially by methods that we have described previously. 4-(Methylnitrosamino)-4-(3-pyridyl-N-oxide)-1-butanol (iso-NNAL-N-oxide) was used as internal standard. Levels of NNAL-N-oxide in smokers' urine ranged from 0.06 to 1.4 pmol/mg creatinine, mean +/- SD 0.53 +/- 0.36 pmol/mg creatinine. Its presence was confirmed by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. NNK-N-oxide was not detected in smokers' urine. Levels of NNAL-N-oxide in the urine of smokeless tobacco users ranged from 0.02 to 1.2 pmol/mg creatinine, mean +/- SD 0.41 +/- 0.35 pmol/mg creatinine. The amounts of NNAL-N-oxide in urine were less than 20% of those of [4-(methylnitrosamino)-1-(3-pyridyl)but-1-yl]-beta-O-D-glucosiduronic acid (NNAL-Gluc) and were approximately 50% as great as those of free NNAL. These results demonstrate that pyridine-N-oxidation is a relatively minor detoxification pathway of NNK and NNAL in humans. The method was applied to analysis of urine from 11 smokers who consumed a diet containing watercress. In an earlier study (S.S. Hecht et al., Cancer Epidemiol., Biomarkers & Prev., 4: 877-884, 1995), we showed that consumption of watercress, a source of phenethyl isothiocyanate (PEITC), caused an increase in urinary excretion of NNAL plus NNAL-Gluc. This was attributed to inhibition of alpha-hydroxylation of NNK by PEITC, as seen in rodents in which PEITC also inhibits the pulmonary carcinogenicity of NNK. However, PEITC also could have inhibited pyridine-N-oxidation of NNK and NNAL. The urine of these smokers was analyzed for NNAL-N-oxide. The results demonstrated that watercress consumption had no effect on levels of NNAL-N-oxide in urine, supporting the conclusion that PEITC does inhibit the metabolic activation of NNK in humans.
Download full-text PDF |
Source |
---|
J Endocrinol Invest
November 2024
Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.
JAMA Netw Open
September 2024
University of Vermont Tobacco Center of Regulatory Science, University of Vermont, Burlington.
Sci Rep
June 2023
Department of Rehabilitation Medicine, Nagasaki University Hospital, Nagasaki, Japan.
This study aimed to examine the validity of urinary N-terminal titin fragment/creatinine (urinary N-titin/Cr) reflecting muscle damage biomarker in patients with interstitial lung disease. This retrospective study enrolled patients with interstitial lung disease. We measured urinary N-titin/Cr.
View Article and Find Full Text PDFMuscle Nerve
August 2023
Department of Neurology, University of Pécs, Medical School, Pécs, Hungary.
Introduction/aims: Urinary titin, an easy-to-obtain marker, has been investigated in muscular dystrophies, but not in myotonic dystrophy type 1 (DM1). We investigated the role of titin as a biomarker of muscle injury in DM1.
Methods: We compared the urinary titin N-fragment/creatinine ratio in 29 patients with DM1 vs.
J Adv Res
February 2023
Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon. Electronic address:
Introduction: The identification and validation of a non-invasive prognostic marker for early detection of diabetic kidney disease (DKD) can lead to substantial improvement in therapeutic decision-making.
Objectives: The main objective of this study is to assess the potential role of the arachidonic acid (AA) metabolite 20-hydroxyeicosatetraenoic (20-HETE) in predicting the incidence and progression of DKD.
Methods: Healthy patients and patients with diabetes were recruited from the Hamad General Hospital in Qatar, and urinary 20-HETE levels were measured.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!