Four different transcript sequences encoding gene products with an unusually high glycine content were identified in Vicia faba root nodules. Northern blot analysis revealed a strong nodule specific expression of the corresponding genes. Time course experiments showed that two of these genes were transcribed before the onset of leghemoglobin expression and hence were designated VfENOD-GRP2 and VfENOD-GRP5, whereas the first detection of VfNOD-GRP1 and VfNOD-GRP4 transcripts coincided with the appearance of leghemoglobin transcripts in V. faba root nodules. A characteristic feature of all encoded nodulins was a hydrophobic N-terminus, which in the case of the nodulins ENOD-GRP2 and ENOD-GRP5 has the characteristics of a signal peptide. Such a structure is comparable to other plant glycine-rich proteins decribed as components of the plant cell wall. Based on tissue print hybridizations, we found that VfNOD-GRP1, VfENOD-GRP2 and VfNOD-GRP4 were expressed in the interzone II-III and in the whole nitrogen-fixing zone III. In contrast to VfENOD-GRP2 and VfNOD-GRP4, the signal intensity of hybridizing VfNOD-GRP1 transcripts was slightly reduced in the more proximal part of broad bean root nodules. Apart from the interzone II-III and the nitrogen fixing zone III, VfENOD-GRP5 RNA was also detected in large areas of the prefixing zone II.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1005779116272 | DOI Listing |
Environ Microbiol
January 2025
Department of Biology, University of Oxford, Oxford, UK.
Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFInt J Mol Sci
January 2025
All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .
Methods/results: In the present report, the gene family of was identified and characterized.
Plant Physiol Biochem
January 2025
Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil.
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!