Advantages and limitations of the use of isolated kidney tubules in pharmacotoxicology.

Cell Biol Toxicol

Laboratoire de Physiopathologie Métabolique et Rénale, INSERM CRI 950201, Faculté de Médecine R. Laënnec, Lyon, France.

Published: December 1996

Among the cellular models used in in vitro renal pharmacotoxicology, isolated kidney tubules, used as suspensions mainly of proximal tubules, offer important advantages. They can be prepared in large amounts under nonsterile conditions within 1-2 h; thus, it is possible to employ a great number of experimental conditions simultaneously and to obtain rapidly many experimental results. Kidney tubules can be prepared from the kidney of many animal species and also from the human kidney; given the very limited availability of healthy human renal tissue, it is therefore possible to choose the most appropriate species for the study of a particular problem encountered in man. Kidney tubules can be used for screening and prevention of nephrotoxic effects and to identify their mechanisms as well as to study the renal metabolism of xenobiotics. When compared with cultured renal cell, a major advantage of kidney tubules is that they remain differentiated. The main limitations of the use of kidney tubules in pharmacotoxicology are (1) the necessity to prepare them as soon as the renal tissue sample is obtained; (2) their limited viability, which is restricted to 2-3 h; (3) the inability to expose them chronically to a potential nephrotoxic drug; (4) the inability to study transepithelial transport; and (5) the uncertainty in the extrapolation to man of the results obtained using animal kidney tubules. These advantages and limitations of the use of human and animal kidney tubules in pharmacotoxicology are illustrated mainly by the results of experiments performed with valproate, an antiepileptic and moderately hyperammonemic agent. The fact that kidney tubules, unlike cultured renal cells, retain key metabolic properties is also shown to be of the utmost importance in detecting certain nephrotoxic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00438159DOI Listing

Publication Analysis

Top Keywords

kidney tubules
36
tubules pharmacotoxicology
12
kidney
11
tubules
10
advantages limitations
8
isolated kidney
8
renal tissue
8
nephrotoxic effects
8
cultured renal
8
animal kidney
8

Similar Publications

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Citrate in autosomal dominant polycystic kidney disease: biomarker or therapeutic agent?

Curr Opin Nephrol Hypertens

March 2025

Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.

Purpose Of Review: This review highlights the latest findings regarding hypocitraturia in autosomal dominant polycystic kidney disease (ADPKD), from both experimental and clinical studies, exploring the underlying pathophysiology and potential therapeutic approach.

Recent Findings: Experimental studies have shown that the lodging of microcrystals in the tubules can trigger cyst formation and growth in polycystic kidney disease (PKD). ADPKD patients are prone to developing hypocitraturia in early stages, which could predispose to calcium microcrystal formation.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Objectives: Serum galectin-3 (sGal-3) is a protein present in renal tubules and increases in experimental rodent models of acute kidney injury. The aim of this study was to compare sGal-3 concentrations in healthy cats and cats with ureteral obstruction (UO).

Methods: This was a retrospective study.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!