Objectives: To determine if prior total body hyperthermia protected against subsequent acute ileitis induced by the cytotoxic lectin, ricin, in rats. The time course of heat shock mRNA and protein expression in the ileum was determined. The effects of heat stress on small intestinal mucosal integrity, arachidonic acid metabolism, and neutrophilic infiltrate were compared in heated and nonheated rats receiving vehicle or ricin intraluminally. The effect of hyperthermia on the circulating neutrophil superoxide production was also evaluated.
Design: Prospective, randomized, controlled trial.
Setting: University research laboratory.
Subjects: Forty-one adult, male Sprague-Dawley rats, weighing 150 to 250 g, and 32 adult, inbred, male Fisher 344 rats, weighing 175 to 250 g.
Interventions: Exposure to whole body hyperthermia and production of acute ileitis. Sprague-Dawley rats were divided randomly into four experimental groups: nonheated control group, heated control group, nonheated ricin group (1 mg/mL water, intraluminal), and heated ricin group. Sprague-Dawley rats in a separate study were assigned to seven groups based on the time of removal of the terminal ileum following hyperthermia: 0 min, or 1, 2, 4, 8, 12, and 24 hrs. Inbred Fisher 344 rats were allocated to the heated and nonheated groups for peripheral neutrophil superoxide generation studies.
Measurements And Main Results: Whole body hyperthermia to a rectal temperature of 41 degrees C to 42 degrees C for 15 to 20 mins: a) was associated with marked mucosal cytoprotection against subsequent ricin-induced ileitis (Injury grade [from 0 = normal to 5 = severe]: 0.4 +/- 0.1 vs. 2.5 +/- 0.2, p < .001); b) prevented the ricin-induced reduction in villus height to crypt depth ratio (2.4 +/- 0.1 vs. 1.9 +/- 0.1, p < .01); and c) significantly reduced the number of infiltrating neutrophils when compared with nonheated ricin-treated rats (11 +/- 2 vs. 32 +/- 3 neutrophils/high-power field, p < .001). The hyperthermia-induced peak increase in heat shock protein (HSP)-70 mRNA at 2 hrs preceded that of HSP 70i at 4 hrs. Heat shock significantly reduced the ricin-induced increase in both basal (8.0 +/- 1.9 vs. 33.0 +/- 8.1 pg of leukotriene B4/mg protein, p < .05) and ionophore-stimulated (16.0 +/- 4.9 vs. 80.0 +/- 15.5 pg of leukotriene B4/mg protein, p < .001) generation of ileal leukotriene B4, but did not alter the cyclooxygenase product, prostaglandin E2. Hyperthermia did not alter peripheral neutrophil superoxide production.
Conclusions: This study assessed the effects of heat shock in the normal and acutely inflamed intestine. These data suggest that heat stress and increased expression of HSP 70i protect against acute intestinal inflammation. This protection is associated with significant reductions in ileal leukotriene B4 generation and neutrophilic infiltrate. Hyperthermia did not alter circulating neutrophil superoxide production. Thus, the mechanism of heat stress protection against acute ileitis may involve local intestinal inhibition of leukotriene B4 production and subsequent neutrophilic infiltration without altering the ability of systemic neutrophils to be activated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00003246-199702000-00020 | DOI Listing |
Front Plant Sci
December 2024
SD Guthrie Research Sdn. Bhd., Banting, Selangor Darul Ehsan, Malaysia.
Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFThe cellular stress response (CSR) is a conserved mechanism that protects cells from environmental and physiological stressors. The heat shock response (HSR), a critical component of the CSR, utilizes molecular chaperones to mitigate proteotoxic stress caused by elevated temperatures. We hypothesized that while the canonical HSR pathways are conserved across cell types, specific cell lines may exhibit unique transcriptional responses to heat shock.
View Article and Find Full Text PDFSci Rep
January 2025
Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, 66506, USA.
The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).
View Article and Find Full Text PDFNat Commun
January 2025
The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.
View Article and Find Full Text PDFPlanta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!