1. In order to investigate the modulation of human hH1 sodium channel alpha-subunits by cAMP-dependent protein kinase (PKA), the channel was expressed in oocytes of Xenopus laevis. 2. Cytosolic injection of cAMP, as well as of SP-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (SP-cAMPS, the S-diastereoisomeric configuration of the compound with respect to the phosphorus atom), resulted in a marked and significant increase in peak sodium current (INa,p). Cytosolic injections of RP-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (RP-cAMPS; a compound inhibitory to PKA) had no effect on peak current. 3. Kinetic parameters of steady-state activation, inactivation and recovery from inactivation were unchanged following stimulation of PKA activity, but a 42 +/- 5% (mean +/- S.E.M.) increase in maximal sodium conductance (delta gmax) could account for the observed increase in INa,p. 4. A set of chimerical sodium channels made from portions of the human cardiac hH1 alpha-subunit and the rat skeletal muscle SkM1 alpha-subunit (which is not affected by PKA stimulation) was generated. These were used to localize the structural determinant in the hH1 sequence responsible for PKA modulation of hH1. From our data we conclude that the effects of PKA on hH1 are conferred by the large cytosolic loop interconnecting transmembrane domains I and II, which is not conserved among sodium channel subtypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1159202 | PMC |
http://dx.doi.org/10.1113/jphysiol.1997.sp021859 | DOI Listing |
Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).
View Article and Find Full Text PDFBackground And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:
Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.
View Article and Find Full Text PDFVet Anaesth Analg
January 2025
Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL, USA.
Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!