In vitro amplification systems not only serve as a tool for the processing of DNA, but have also provided important model systems for the investigation of fundamental issues in evolutionary optimization. In this work we present a coupled amplification system based on the self-sustained sequence replication (3SR), also known as nucleic acid sequence-based amplification (NASBA), which allows the experimental investigation of evolving molecular cooperation. The 3SR reaction is an isothermal method of nucleic acid amplification and an alternative to PCR. A target nucleic acid sequence can be amplified exponentially in vitro using two enzymes: reverse transcriptase (RT) and a DNA-dependent RNA polymerase (RNAP). A system has been constructed in which amplification of two molecular species is cooperatively coupled. These species are single-stranded (ss)DNA templates (D1 and D2) of lengths 58 and 68 nucleotides, respectively. Coupling occurs when D1 and D2 anneal to each other via a complementary region (DB and DB') situated at the 3' end of each template. RT elongates the hybridized templates producing a double-stranded (ds)DNA of 106 base pairs (bp). This double strand contains two promoters, which are situated on either side of, and directly adjacent to DB, and which are oriented towards each other. These promoters specify two RNA transcripts encompassing, respectively, the D1 and D2 portion of the dsDNA. After hybridization of two primers (P1 and P2) to the transcripts (R1 and R2) and reverse transcription, the ss templates D1 and D2 are regenerated. Amplification cycles of D1 and D2 are coupled cooperatively via the common dsDNA intermediate. Under optimized batch conditions the system shows the expected growth phases: exponential, linear and saturation phase. The enzymes of the 3SR cycle tend to misincorporate nucleotides and to produce abortive products. In future experiments, we intend to use the system for studies of evolutionary processes in spatially distributed systems where new strategies for optimization at the molecular level are possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1997.0358a.x | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFNeurotox Res
January 2025
Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.
To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.
Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.
Immunol Res
January 2025
Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.
The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!