One of the open reading frames located on yeast Saccharomyces cerevisiae chromosome III, YCR24c, appeared to code for a protein of unknown function, but the predicted sequence showed similarity with asparaginyl-tRNA synthetase from Escherichia coli, with 38% amino acid identity. There is a putative mitochondrial targeting signal at the N-terminus of the YCR24c product. Northern blot analysis of total RNA from a wild-type strain sigma1278b confirmed that YCR24c was transcribed. Disruption of the chromosomal copy of YCR24c in a respiratory-competent haploid cell induced a petite phenotype, but did not affect cell viability. This respiratory-defective phenotype is typical for a mutation in a nuclear gene that induces a non-functional mitochondrial protein synthesis system. The protein encoded by YCR24c was expressed in Escherichia coli in a histidine-tagged form and isolated. The enzyme aminoacylated unfractionated Escherichia coli tRNA with asparagine. These results identified YCR24c as the structural gene for yeast mitochondrial asparaginyl-tRNA synthetase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1997.0268a.x | DOI Listing |
Mod Rheumatol Case Rep
January 2025
Department of Rheumatology, Kameda Medical Center, Kamogawa, Chiba, Japan.
In recent years, the use of immune checkpoint inhibitors (ICIS) has increased and there have been case reports of anti-aminoacyl-tRNA synthetase (anti-ARS) antibody syndrome during ICI treatment. However, these cases are limited, and their clinical characteristics are not fully understood. We report the first case of anti-ARS antibody syndrome with asparaginyl-tRNA synthetase antibody during ICI therapy.
View Article and Find Full Text PDFJ Peripher Nerv Syst
June 2024
Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France.
Background And Aims: Pathogenic variants in the NARS1 gene, which encodes for the asparaginyl-tRNA synthetase1 (NARS1) enzyme, were associated with complex central and peripheral nervous system phenotypes. Recently, Charcot-Marie-Tooth (CMT) disease has been linked to heterozygous pathogenic variants in NARS1 in nine patients. Here, we report two brothers and their mother from a French family with distal hereditary motor neuropathy (dHMN) carrying a previously unreported NARS1 variant.
View Article and Find Full Text PDFBrain Commun
March 2024
Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium.
Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase () cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy.
View Article and Find Full Text PDFIUBMB Life
August 2024
Chemistry Department, Skidmore College, Saratoga Springs, New York, USA.
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation.
View Article and Find Full Text PDFNat Commun
January 2024
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!