The objective of this study was to characterize the signaling mechanisms of the mu-opioid receptor in its coupling to the cystic fibrosis transmembrane conductance regulator (CFTR) when coexpressed in Xenopus oocytes. Because oocytes do not contain endogenous cAMP-regulated ion channels, the cAMP-modulated CFTR was coexpressed with receptors as a 'reporter' channel. Agonist treatment of oocytes coexpressing mu-opioid receptors, beta2-adrenergic receptors and CFTR produced Cl- currents in a dose-related manner and immunocytochemical analysis confirmed receptor expression. These data suggest that opioid agonists could activate adenylyl cyclase in this system to elevate cAMP levels. Heterotrimeric G protein betagamma-subunits acting on adenylyl cyclase type II would increase cAMP levels. The probable presence of adenylyl cyclase type II and other components of opioid signal transduction such as G(i alpha2), were demonstrated by RT-PCR. However, measurement of cAMP levels in individual oocytes by radioimmunoassay showed that opioid agonist application to oocytes expressing mu-opioid receptors, beta2-adrenergic receptors and CFTR did not increase cAMP levels, whereas application of the beta2-adrenergic agonist, isoproterenol, or IBMX alone did increase cAMP levels. Opioid-induced CFTR activation was not affected by either application of the broad spectrum kinase inhibitor, H7, nor by application of the specific PKA inhibitor, KT5720. Injection of free betagamma-subunits, which could activate the endogenous type II cyclase, was unable to produce measurable currents in oocytes expressing the CFTR. These studies indicate that opioid activation of the CFTR is not mediated through a cAMP/PKA pathway, by either betagamma-subunit activation of an adenylyl cyclase type II or promiscuous coupling to G(s alpha).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-328x(96)00189-1 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.
View Article and Find Full Text PDFThe concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.
View Article and Find Full Text PDFJ Med Chem
January 2025
Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold.
View Article and Find Full Text PDFForensic Sci Med Pathol
January 2025
Adelaide School of Biomedicine, The University of Adelaide, Level 2, Room N237, Helen Mayo North, Frome Road, Adelaide, South Australia, 5005, Australia.
Tattooing has been a facet of many civilizations and cultures for millennia with a recent resurgence in popularity in many Western countries. The reasons for tattooing are diverse ranging from simple decorative designs to enforced tattooing of concentration camp inmates. In a forensic context tattoos are frequently observed and may play a role in some cases of identification, even after decomposition, incineration or dismemberment.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!