SCG10 is a neuronal growth-associated protein that is concentrated in the growth cones of developing neurons. SCG10 shows a high degree of sequence homology to the ubiquitous phosphoprotein stathmin, which has been recently identified as a factor that destabilizes microtubules by increasing their catastrophe rate. Whereas stathmin is a soluble cytosolic protein, SCG10 is membrane-associated, indicating that the protein acts in a distinct subcellular compartment. Identifying the precise intracellular distribution of SCG10 as well as the mechanisms responsible for its specific targeting will contribute to elucidating its function. The main structural feature distinguishing the two proteins is that SCG10 contains an NH2-terminal extension of 34 amino acids. In this study, we have examined the intracellular distribution of SCG10 in PC12 cells and in transfected COS-7 cells and the role of the NH2-terminal domain in membrane-binding and intracellular targeting. SCG10 was found to be localized to the Golgi complex region. We show that the NH2-terminal region (residues 1-34) was necessary for membrane targeting and Golgi localization. Fusion proteins consisting of the NH2-terminal 34 amino acids of SCG10 and the related protein stathmin or the unrelated protein, beta-galactosidase, accumulated in the Golgi, demonstrating that this sequence was sufficient for Golgi localization. Biosynthetic labeling of transfected COS-7 cells with [3H]palmitic acid revealed that two cysteine residues contained within the NH2-terminal domain were sites of palmitoylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.8.5175 | DOI Listing |
Acta Neuropathol
January 2024
Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD.
View Article and Find Full Text PDFScience
March 2023
Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in pre-mRNA.
View Article and Find Full Text PDFTrends Neurosci
June 2021
Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
Transactive response DNA-binding protein 43 kDa (TDP-43), a multifunctional nucleic acid-binding protein, is a primary component of insoluble aggregates associated with several devastating nervous system disorders; mutations in TARDBP, its encoding gene, are a cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we review established and emerging roles of TDP-43 and consider how its dysfunction impinges on RNA homeostasis in the nervous system, thereby contributing to neural degeneration. Notably, improper splicing of the axonal growth-associated factor STMN2 has recently been connected to TDP-43 dysfunction, providing a mechanistic link between TDP-43 proteinopathies and neuropathy.
View Article and Find Full Text PDFJ Mol Neurosci
June 2021
Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Shandong Province, 266555, Qingdao, China.
Previous studies have shown that lncRNA NEAT1 and miR-29b are closely associated with repair of the injured spinal cord. However, the mechanism by which lncRNA NEAT1 promotes regeneration after spinal cord injury by regulating miR-29b has not been reported. To explore this mechanism, we established a rat model of spinal cord injury (SCI).
View Article and Find Full Text PDFAdv Healthc Mater
February 2021
Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
Mesenchymal stem cells (MSCs) are widely used in regenerative medicine and tissue engineering and delivering biological molecules into MSCs has been used to control stem cell behavior. However, the efficient delivery of large biomolecules such as DNA, RNA, and proteins into MSCs using nonviral delivery strategies remains an ongoing challenge. Herein, nanoparticles composed of cationic bioreducible lipid-like materials (lipidoids) are developed to intracellularly deliver mRNA into human mesenchymal stem cells (hMSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!