Until now, erythropoietin (EPO) was thought to be produced exclusively in fetal liver and adult kidney and to regulate mammalian erythropoiesis. However, we recently showed that steady state levels of EPO mRNA could be induced up to 100-fold in primary mouse astrocytes cultured under hypoxic conditions, and also reported the presence of mRNA for EPO and its receptor in the brain of mouse, monkey and human. In extending these studies on humans we now show that immunoreactive EPO is present in ventricular cerebrospinal fluid (CSF) of 5 patients with traumatic brain injuries: EPO was found in 15 out of 15 CSF samples. There was no correlation between the serum EPO concentration and the concentration in the CSF. However, EPO concentrations in CSF correlated with the degree of blood-brain-barrier dysfunction. This suggests that EPO does not cross the intact blood-brain-barrier, implying that EPO is produced in the brain itself, most probably by astrocytes in an oxygen-dependent manner. In view that neuronal cells carry the EPO receptor, we propose that EPO acts in a paracrine fashion in the central nervous system and might function as a protective factor against hypoxia-induced damage of neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.1997.55DOI Listing

Publication Analysis

Top Keywords

epo
11
epo receptor
8
detection erythropoietin
4
erythropoietin human
4
human liquor
4
liquor intrinsic
4
intrinsic erythropoietin
4
erythropoietin production
4
brain
4
production brain
4

Similar Publications

Background: Although novel treatments for Alzheimer's disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long-term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood-brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.

View Article and Find Full Text PDF

Obesity and iron deficiency (ID) are widespread health issues, with subclinical inflammation in obesity potentially contributing to ID through unclear mechanisms. The aim of the present work was to elucidate how obesity-associated inflammation disturb iron metabolism and to investigate the effect of intravenous (IV) iron supplementation on absolute iron deficient pre-obese (BMI 25.0-29.

View Article and Find Full Text PDF

Analytical Characterization of Aberrant Trisulfide Bond Formation in Therapeutic Proteins and Their Impact on Product Quality.

J Pharm Sci

January 2025

Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.. Electronic address:

Post translational modifications (PTMs) of proteins play an integral role in maintaining the overall structure and function of proteins including their proper folding, binding, and potency. However, not all PTMs play a positive role in protein drugs as some can lead to product-related impurities that negatively impact protein function. One example of a PTM is trisulfide formation, which appears as a product related species in multiple biologic drug products.

View Article and Find Full Text PDF
Article Synopsis
  • Aplastic anemia (AA) is a serious blood condition with few treatment options, characterized by halted blood cell production and increased cell death due to oxidative stress.
  • Researchers discovered unique carbon dots derived from donkey-hide gelatin (G-CDs) that can stimulate blood cell production and reduce oxidative stress, effectively promoting the recovery of blood cells in AA.
  • Administered to AA mice after chemotherapy, G-CDs significantly increased red blood cell levels and improved overall blood function more effectively than the current treatment, erythropoietin (EPO), without negative side effects.
View Article and Find Full Text PDF

Objective: The optimal timing of bypass surgery for patients with moyamoya disease (MMD) or moyamoya syndrome (MMS) following an acute stroke episode remains unclear, mainly owing to the risk of postoperative complications. In this study, we aim to validate the safety and efficacy of early intervention using multiple burr hole (MBH) and erythropoietin (EPO) therapy, thereby refining the management strategy for patients with acute stroke episode of MMD or MMS.

Methods: We retrospectively analyzed data from 70 patients with MMD or MMS who underwent MBH and EPO therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!