The effect of animal cytochrome C (Ca), biotechnological cytochrome (Cb) and its hemtetradecapeptide (HTDP) on cerebral blood flow autoregulation during rapid decrease of systemic arterial pressure (SAP) was studied in acute experiments on rats. Cytochrome C preparations caused no effect on the autoregulatory responses of the cerebral vessels in animals with normal cerebral circulation. Injection of 5 mg/kg Ca and Cb and 0.8 mg/kg HTDP promoted restoration of the phenomenon of cerebral blood flow autoregulation in ischemic brain damage in change of SAP from 120 to 60 mm Hg. Prophylactic injection of 20 mg/kg Ca and Cb and 3.3 mg/kg HTDP prevented cerebral blood flow autoregulation disturbance caused by transitory brain ischemia.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cerebral blood
16
blood flow
16
flow autoregulation
12
cytochrome preparations
8
injection mg/kg
8
mg/kg mg/kg
8
mg/kg htdp
8
cerebral
6
[the cytochrome
4
autoregulation
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

Biomed Phys Eng Express

January 2025

Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: Digital technologies for type 2 diabetes mellitus (T2DM) care hold great potential to improve patients' health in the long term. Only a subset of telemedicine offerings are digital interventions that meet the criteria for prescribable digitale Gesundheitsanwendung (digital health apps; DiGAs) in Germany. Digital treatments further provide vast amounts of patient data that are important to generate evidence.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!